Guodong Zhang, Dandan Lu, Min Cheng, Hua Guo, Hong Gao
{"title":"通过硬碰撞光辉散射实现振动非弹性 Ar++N2 碰撞中的受挫电荷转移","authors":"Guodong Zhang, Dandan Lu, Min Cheng, Hua Guo, Hong Gao","doi":"10.1038/s41467-024-52530-z","DOIUrl":null,"url":null,"abstract":"<p>Vibrational energy transfer in collisions between ions and neutrals is a fundamental process in interstellar media, planetary atmospheres, and plasmas. The conventional wisdom is that glancing collisions with large impact parameters are forward-scattered with low vibrational excitation, while hard collisions with small impact parameters are sideway- or backward-scattered with relatively high vibrational excitation. Here, we report experimental observations with a three-dimensional velocity-map imaging crossed-beam apparatus in the inelastic scattering process Ar<sup>+</sup>+N<sub>2</sub>(<i>v</i>′′ = 0, <i>J</i>′′)→Ar<sup>+</sup>+N<sub>2</sub>(<i>v</i>′, <i>J</i>′), where all the vibrationally excited N<sub>2</sub> products are dominated by forward scattering, contradicting the textbook model. Trajectory surface hopping calculations not only reproduced the experimental observation qualitatively, but also revealed that the vibrational excitation mainly occurs through a transient charge-transfer process. The hard collision glory mechanism, which has so far only been observed in inelastic rotational energy transfer between neutrals, is shown to play a major role for vibrational excitation in the inelastic Ar<sup>+</sup>+N<sub>2</sub> collision, via the frustrated charge transfer process.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frustrated charge transfer in vibrationally inelastic Ar++N2 collisions via hard collision glory scattering\",\"authors\":\"Guodong Zhang, Dandan Lu, Min Cheng, Hua Guo, Hong Gao\",\"doi\":\"10.1038/s41467-024-52530-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Vibrational energy transfer in collisions between ions and neutrals is a fundamental process in interstellar media, planetary atmospheres, and plasmas. The conventional wisdom is that glancing collisions with large impact parameters are forward-scattered with low vibrational excitation, while hard collisions with small impact parameters are sideway- or backward-scattered with relatively high vibrational excitation. Here, we report experimental observations with a three-dimensional velocity-map imaging crossed-beam apparatus in the inelastic scattering process Ar<sup>+</sup>+N<sub>2</sub>(<i>v</i>′′ = 0, <i>J</i>′′)→Ar<sup>+</sup>+N<sub>2</sub>(<i>v</i>′, <i>J</i>′), where all the vibrationally excited N<sub>2</sub> products are dominated by forward scattering, contradicting the textbook model. Trajectory surface hopping calculations not only reproduced the experimental observation qualitatively, but also revealed that the vibrational excitation mainly occurs through a transient charge-transfer process. The hard collision glory mechanism, which has so far only been observed in inelastic rotational energy transfer between neutrals, is shown to play a major role for vibrational excitation in the inelastic Ar<sup>+</sup>+N<sub>2</sub> collision, via the frustrated charge transfer process.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-52530-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52530-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Frustrated charge transfer in vibrationally inelastic Ar++N2 collisions via hard collision glory scattering
Vibrational energy transfer in collisions between ions and neutrals is a fundamental process in interstellar media, planetary atmospheres, and plasmas. The conventional wisdom is that glancing collisions with large impact parameters are forward-scattered with low vibrational excitation, while hard collisions with small impact parameters are sideway- or backward-scattered with relatively high vibrational excitation. Here, we report experimental observations with a three-dimensional velocity-map imaging crossed-beam apparatus in the inelastic scattering process Ar++N2(v′′ = 0, J′′)→Ar++N2(v′, J′), where all the vibrationally excited N2 products are dominated by forward scattering, contradicting the textbook model. Trajectory surface hopping calculations not only reproduced the experimental observation qualitatively, but also revealed that the vibrational excitation mainly occurs through a transient charge-transfer process. The hard collision glory mechanism, which has so far only been observed in inelastic rotational energy transfer between neutrals, is shown to play a major role for vibrational excitation in the inelastic Ar++N2 collision, via the frustrated charge transfer process.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.