基于双判别条件生成对抗网络的 VTI 介质地震 PP 波 AVO 反演方法

IF 7.5 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Geoscience and Remote Sensing Pub Date : 2024-09-16 DOI:10.1109/TGRS.2024.3462098
Yuhang Sun;Hongli Dong;Gui Chen;Yamin Shang;Liyan Zhang;Yang Liu
{"title":"基于双判别条件生成对抗网络的 VTI 介质地震 PP 波 AVO 反演方法","authors":"Yuhang Sun;Hongli Dong;Gui Chen;Yamin Shang;Liyan Zhang;Yang Liu","doi":"10.1109/TGRS.2024.3462098","DOIUrl":null,"url":null,"abstract":"Elastic parameters play pivotal roles in geophysics, with seismic amplitude variation with offset (AVO) inversion being a common method for obtaining the parameters. In contrast to isotropic media, vertical transversely isotropic (VTI) media, which introduce anisotropic parameters to describe geological characteristics, align more closely with field strata. Conducting AVO inversion based on VTI media enhances the accuracy of inverted parameters. Conventional AVO inversion methods typically rely on low-frequency parameters or training samples, which are often generated from well-log data. However, well-log data are usually insufficient, and obtaining accurate anisotropic parameters from well-log data is challenging. These hinder the generation of low-frequency anisotropic parameters or the creation of training samples with anisotropic parameters as labels, thus impacting the accuracy of inverted parameters for VTI media. Addressing these challenges, we construct a double discriminator conditional generative adversarial network (DDCGAN) models under the constraints of the convolution model theory. Building upon the foundation, we propose a seismic AVO inversion method tailored for VTI media. The DDCGANs combine the conditional generative adversarial networks (CGANs), which have superior feature extraction ability, with the well-established convolution model theory, making it suitable for addressing AVO inversion challenges in VTI media. Iterative optimization of the constructed DDCGANs is achieved by building combined loss functions, including errors of elastic parameters and seismic data. Trial calculations using model and field data demonstrate that the proposed method can improve the accuracy of inverted parameters compared to conventional AVO inversion methods, showcasing its feasibility, advancement, and practicality.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic PP-Wave AVO Inversion Method for VTI Media Based on Double Discriminator Conditional Generative Adversarial Networks\",\"authors\":\"Yuhang Sun;Hongli Dong;Gui Chen;Yamin Shang;Liyan Zhang;Yang Liu\",\"doi\":\"10.1109/TGRS.2024.3462098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Elastic parameters play pivotal roles in geophysics, with seismic amplitude variation with offset (AVO) inversion being a common method for obtaining the parameters. In contrast to isotropic media, vertical transversely isotropic (VTI) media, which introduce anisotropic parameters to describe geological characteristics, align more closely with field strata. Conducting AVO inversion based on VTI media enhances the accuracy of inverted parameters. Conventional AVO inversion methods typically rely on low-frequency parameters or training samples, which are often generated from well-log data. However, well-log data are usually insufficient, and obtaining accurate anisotropic parameters from well-log data is challenging. These hinder the generation of low-frequency anisotropic parameters or the creation of training samples with anisotropic parameters as labels, thus impacting the accuracy of inverted parameters for VTI media. Addressing these challenges, we construct a double discriminator conditional generative adversarial network (DDCGAN) models under the constraints of the convolution model theory. Building upon the foundation, we propose a seismic AVO inversion method tailored for VTI media. The DDCGANs combine the conditional generative adversarial networks (CGANs), which have superior feature extraction ability, with the well-established convolution model theory, making it suitable for addressing AVO inversion challenges in VTI media. Iterative optimization of the constructed DDCGANs is achieved by building combined loss functions, including errors of elastic parameters and seismic data. Trial calculations using model and field data demonstrate that the proposed method can improve the accuracy of inverted parameters compared to conventional AVO inversion methods, showcasing its feasibility, advancement, and practicality.\",\"PeriodicalId\":13213,\"journal\":{\"name\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10681115/\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10681115/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

弹性参数在地球物理学中起着举足轻重的作用,地震振幅随偏移变化(AVO)反演是获取弹性参数的常用方法。与各向同性介质相比,垂直横向各向同性(VTI)介质引入了各向异性参数来描述地质特征,更接近野外地层。在 VTI 介质基础上进行 AVO 反演可提高反演参数的准确性。传统的AVO反演方法通常依赖于低频参数或训练样本,而这些参数或样本通常由井录数据生成。然而,井录数据通常不足,而且从井录数据中获取准确的各向异性参数具有挑战性。这些都阻碍了低频各向异性参数的生成或以各向异性参数为标签的训练样本的创建,从而影响了 VTI 介质反演参数的准确性。为了应对这些挑战,我们在卷积模型理论的约束下构建了双判别条件生成对抗网络(DDCGAN)模型。在此基础上,我们提出了针对 VTI 介质的地震 AVO 反演方法。DDCGAN 将具有卓越特征提取能力的条件生成对抗网络(CGAN)与成熟的卷积模型理论相结合,使其适用于解决 VTI 介质中的 AVO 反演难题。通过建立包括弹性参数误差和地震数据误差在内的组合损失函数,对构建的 DDCGANs 进行了迭代优化。利用模型和野外数据进行的试验计算表明,与传统的 AVO 反演方法相比,所提出的方法可以提高反演参数的精度,显示了其可行性、先进性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seismic PP-Wave AVO Inversion Method for VTI Media Based on Double Discriminator Conditional Generative Adversarial Networks
Elastic parameters play pivotal roles in geophysics, with seismic amplitude variation with offset (AVO) inversion being a common method for obtaining the parameters. In contrast to isotropic media, vertical transversely isotropic (VTI) media, which introduce anisotropic parameters to describe geological characteristics, align more closely with field strata. Conducting AVO inversion based on VTI media enhances the accuracy of inverted parameters. Conventional AVO inversion methods typically rely on low-frequency parameters or training samples, which are often generated from well-log data. However, well-log data are usually insufficient, and obtaining accurate anisotropic parameters from well-log data is challenging. These hinder the generation of low-frequency anisotropic parameters or the creation of training samples with anisotropic parameters as labels, thus impacting the accuracy of inverted parameters for VTI media. Addressing these challenges, we construct a double discriminator conditional generative adversarial network (DDCGAN) models under the constraints of the convolution model theory. Building upon the foundation, we propose a seismic AVO inversion method tailored for VTI media. The DDCGANs combine the conditional generative adversarial networks (CGANs), which have superior feature extraction ability, with the well-established convolution model theory, making it suitable for addressing AVO inversion challenges in VTI media. Iterative optimization of the constructed DDCGANs is achieved by building combined loss functions, including errors of elastic parameters and seismic data. Trial calculations using model and field data demonstrate that the proposed method can improve the accuracy of inverted parameters compared to conventional AVO inversion methods, showcasing its feasibility, advancement, and practicality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
期刊最新文献
Remote sensing images destriping via nonconvex regularization and fast regional decomposition An Enhanced Global Feature-Guided Network Based on Multiple Filtering Noise Reduction for Remote Sensing Image Compression SHBGAN: Hybrid Bilateral Attention GAN for Seismic Image Super-Resolution Reconstruction FDBANet: A Fusion Frequency Domain Denoising and Multi-Scale Boundary Attention Network for Sonar Image Semantic Segmentation Remote-Sensing Image Scene Classification via Graph Template Enhancement and Supplementation Network with Dual-Teacher Knowledge Distillation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1