优化选择性二氧化碳电还原成 C2+ 产物的多孔气体扩散电极内碳酸氢盐和 pH 值的近电极浓度梯度

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-09-18 DOI:10.1021/acs.nanolett.4c03116
Yao Tan, Xiqing Wang, Xiangqiong Liao, Qin Chen, Hongmei Li, Kang Liu, Junwei Fu, Min Liu
{"title":"优化选择性二氧化碳电还原成 C2+ 产物的多孔气体扩散电极内碳酸氢盐和 pH 值的近电极浓度梯度","authors":"Yao Tan, Xiqing Wang, Xiangqiong Liao, Qin Chen, Hongmei Li, Kang Liu, Junwei Fu, Min Liu","doi":"10.1021/acs.nanolett.4c03116","DOIUrl":null,"url":null,"abstract":"With high current density, the intense near-electrode CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) will cause the concentration gradients of bicarbonate (HCO<sub>3</sub><sup>–</sup>) and hydroxyl (OH<sup>–</sup>) ions, which affect the selectivity of high-value C<sub>2+</sub> products of the CO<sub>2</sub>RR. In this work, we simulated the near-electrode concentration gradients of electrolyte species with different porous Cu-based CLs (catalyst layers) of GDE (gas diffusion electrode) by COMSOL Multiphysics. The higher porosity CL exhibits a better buffer ability of local alkalinity while ensuring a sufficient supply of H<sup>+</sup> and local CO<sub>2</sub> concentration. Subsequently, the different porosity CLs were prepared by vacuum-thermal evaporation with different evaporation rate. Structural characterizations and liquid permeability tests confirm the role of the porous CL structure in optimizing concentration gradients. As a result, the high-porosity CL (Cu-HP) exhibits a higher C<sub>2+</sub> Faraday efficiency (FE) of ∼79.61% at 500 mA cm<sup>–2</sup> under 1 M KHCO<sub>3</sub>, far more than the FE<sub>C2+</sub> ≈ 38.20% with the low-porosity sample (Cu-LP).","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-Electrode Concentration Gradients of Bicarbonate and pH within Porous Gas Diffusion Electrode for Optimized Selective CO2 Electroreduction to C2+ Products\",\"authors\":\"Yao Tan, Xiqing Wang, Xiangqiong Liao, Qin Chen, Hongmei Li, Kang Liu, Junwei Fu, Min Liu\",\"doi\":\"10.1021/acs.nanolett.4c03116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With high current density, the intense near-electrode CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) will cause the concentration gradients of bicarbonate (HCO<sub>3</sub><sup>–</sup>) and hydroxyl (OH<sup>–</sup>) ions, which affect the selectivity of high-value C<sub>2+</sub> products of the CO<sub>2</sub>RR. In this work, we simulated the near-electrode concentration gradients of electrolyte species with different porous Cu-based CLs (catalyst layers) of GDE (gas diffusion electrode) by COMSOL Multiphysics. The higher porosity CL exhibits a better buffer ability of local alkalinity while ensuring a sufficient supply of H<sup>+</sup> and local CO<sub>2</sub> concentration. Subsequently, the different porosity CLs were prepared by vacuum-thermal evaporation with different evaporation rate. Structural characterizations and liquid permeability tests confirm the role of the porous CL structure in optimizing concentration gradients. As a result, the high-porosity CL (Cu-HP) exhibits a higher C<sub>2+</sub> Faraday efficiency (FE) of ∼79.61% at 500 mA cm<sup>–2</sup> under 1 M KHCO<sub>3</sub>, far more than the FE<sub>C2+</sub> ≈ 38.20% with the low-porosity sample (Cu-LP).\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c03116\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03116","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在高电流密度下,强烈的近电极二氧化碳还原反应(CO2RR)会引起碳酸氢盐(HCO3-)和羟基(OH-)离子的浓度梯度,从而影响 CO2RR 高价值 C2+ 产物的选择性。在这项工作中,我们利用 COMSOL Multiphysics 模拟了不同多孔铜基 CL(催化剂层)的 GDE(气体扩散电极)电解质物种的近电极浓度梯度。孔隙率较高的 CL 对局部碱度具有更好的缓冲能力,同时确保 H+ 和局部 CO2 浓度的充足供应。随后,通过真空-热蒸发法制备了不同孔隙率的 CL,并采用了不同的蒸发速率。结构表征和液体渗透性测试证实了多孔 CL 结构在优化浓度梯度方面的作用。因此,在 1 M KHCO3 条件下,500 mA cm-2 时,高孔隙率 CL(Cu-HP)的 C2+ 法拉第效率(FE)为 79.61%,远高于低孔隙率样品(Cu-LP)的 FEC2+ ≈ 38.20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Near-Electrode Concentration Gradients of Bicarbonate and pH within Porous Gas Diffusion Electrode for Optimized Selective CO2 Electroreduction to C2+ Products
With high current density, the intense near-electrode CO2 reduction reaction (CO2RR) will cause the concentration gradients of bicarbonate (HCO3) and hydroxyl (OH) ions, which affect the selectivity of high-value C2+ products of the CO2RR. In this work, we simulated the near-electrode concentration gradients of electrolyte species with different porous Cu-based CLs (catalyst layers) of GDE (gas diffusion electrode) by COMSOL Multiphysics. The higher porosity CL exhibits a better buffer ability of local alkalinity while ensuring a sufficient supply of H+ and local CO2 concentration. Subsequently, the different porosity CLs were prepared by vacuum-thermal evaporation with different evaporation rate. Structural characterizations and liquid permeability tests confirm the role of the porous CL structure in optimizing concentration gradients. As a result, the high-porosity CL (Cu-HP) exhibits a higher C2+ Faraday efficiency (FE) of ∼79.61% at 500 mA cm–2 under 1 M KHCO3, far more than the FEC2+ ≈ 38.20% with the low-porosity sample (Cu-LP).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Optical Tweezers Assembled Nanodiamond Quantum Sensors Near-Electrode Concentration Gradients of Bicarbonate and pH within Porous Gas Diffusion Electrode for Optimized Selective CO2 Electroreduction to C2+ Products Stabilizing Dye-Sensitized Upconversion Hybrids by Cyclooctatetraene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1