提高镀锂电位以促进电化学锂介导的氨合成

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-09-18 DOI:10.1021/acsenergylett.4c02149
Haldrian Iriawan, Antonia Herzog, Sunmoon Yu, Nicole Ceribelli, Yang Shao-Horn
{"title":"提高镀锂电位以促进电化学锂介导的氨合成","authors":"Haldrian Iriawan, Antonia Herzog, Sunmoon Yu, Nicole Ceribelli, Yang Shao-Horn","doi":"10.1021/acsenergylett.4c02149","DOIUrl":null,"url":null,"abstract":"The electrochemical lithium-mediated N<sub>2</sub> reduction is a promising process for sustainable ammonia synthesis. Unfortunately, fundamental understanding linking the interfacial chemistry of lithium plating with ammonia efficiency is not well understood. We investigated a series of tetrahydrofuran electrolytes (LiClO<sub>4</sub>, LiBF<sub>4</sub>, LiTFSI, LiFSI) at 0.2–7.0 M. The Li<sup>+</sup>/Li potential (<i>E</i><sub>Li+/Li</sub>) measured against the electrolyte-invariant Me<sub>10</sub>Fc reference increased with more dissociative salts and higher concentration. The upshift in <i>E</i><sub>Li+/Li</sub> was found to correlate with greater ammonia production stability and faradaic efficiency as well as the production rate. This correlation could be attributed to altered solid–electrolyte interphase (SEI), which revealed prominent anion-derived (LiF) and alkoxide (LiOEt) species with increasing <i>E</i><sub>Li+/Li</sub> from Raman spectroscopy, potentially providing more Li<sub><i>x</i></sub>N and enhanced ion transport. Such insights can be used to guide the design of electrolytes to promote lithium-mediated ammonia synthesis for practical applications.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upshifting Lithium Plating Potential To Enhance Electrochemical Lithium Mediated Ammonia Synthesis\",\"authors\":\"Haldrian Iriawan, Antonia Herzog, Sunmoon Yu, Nicole Ceribelli, Yang Shao-Horn\",\"doi\":\"10.1021/acsenergylett.4c02149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrochemical lithium-mediated N<sub>2</sub> reduction is a promising process for sustainable ammonia synthesis. Unfortunately, fundamental understanding linking the interfacial chemistry of lithium plating with ammonia efficiency is not well understood. We investigated a series of tetrahydrofuran electrolytes (LiClO<sub>4</sub>, LiBF<sub>4</sub>, LiTFSI, LiFSI) at 0.2–7.0 M. The Li<sup>+</sup>/Li potential (<i>E</i><sub>Li+/Li</sub>) measured against the electrolyte-invariant Me<sub>10</sub>Fc reference increased with more dissociative salts and higher concentration. The upshift in <i>E</i><sub>Li+/Li</sub> was found to correlate with greater ammonia production stability and faradaic efficiency as well as the production rate. This correlation could be attributed to altered solid–electrolyte interphase (SEI), which revealed prominent anion-derived (LiF) and alkoxide (LiOEt) species with increasing <i>E</i><sub>Li+/Li</sub> from Raman spectroscopy, potentially providing more Li<sub><i>x</i></sub>N and enhanced ion transport. Such insights can be used to guide the design of electrolytes to promote lithium-mediated ammonia synthesis for practical applications.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenergylett.4c02149\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c02149","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电化学锂介导的 N2 还原是一种很有前景的可持续合成氨工艺。遗憾的是,人们对锂电镀的界面化学与氨效率之间联系的基本认识并不充分。我们研究了一系列 0.2-7.0 M 的四氢呋喃电解质(LiClO4、LiBF4、LiTFSI、LiFSI)。相对于电解质不变的 Me10Fc 参考,测量到的 Li+/Li 电位(ELi+/Li)随着更多的离解盐和更高的浓度而增加。研究发现,ELi+/Li 的上移与更高的氨生产稳定性、远动效率以及生产率相关。拉曼光谱显示,随着 ELi+/Li 的增加,阴离子衍生(LiF)和烷氧基(LiOEt)物种也会增加,这可能会提供更多的 LixN 并增强离子传输。这些见解可用于指导电解质的设计,以促进锂介导的氨合成的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Upshifting Lithium Plating Potential To Enhance Electrochemical Lithium Mediated Ammonia Synthesis
The electrochemical lithium-mediated N2 reduction is a promising process for sustainable ammonia synthesis. Unfortunately, fundamental understanding linking the interfacial chemistry of lithium plating with ammonia efficiency is not well understood. We investigated a series of tetrahydrofuran electrolytes (LiClO4, LiBF4, LiTFSI, LiFSI) at 0.2–7.0 M. The Li+/Li potential (ELi+/Li) measured against the electrolyte-invariant Me10Fc reference increased with more dissociative salts and higher concentration. The upshift in ELi+/Li was found to correlate with greater ammonia production stability and faradaic efficiency as well as the production rate. This correlation could be attributed to altered solid–electrolyte interphase (SEI), which revealed prominent anion-derived (LiF) and alkoxide (LiOEt) species with increasing ELi+/Li from Raman spectroscopy, potentially providing more LixN and enhanced ion transport. Such insights can be used to guide the design of electrolytes to promote lithium-mediated ammonia synthesis for practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
Innovations in Interconnecting Layers for Perovskite-Based Tandem Solar Cells In Vacuo Scratching Yields Undisturbed Insight into the Bulk of Lithium-Ion Battery Positive Electrode Materials Upshifting Lithium Plating Potential To Enhance Electrochemical Lithium Mediated Ammonia Synthesis Origin of the Low Overpotential for Isopropanol Oxidation on Pt–Ru Electrocatalysts Self-Propelled Nanocellulose Aerogel Eco-Robots for Self-Powered Aquatic Environment Perception
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1