共聚物中官能团位置对三元共晶体的影响:磺酰胺基苯甲酸的一个案例

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Crystal Growth & Design Pub Date : 2024-09-03 DOI:10.1021/acs.cgd.4c0055010.1021/acs.cgd.4c00550
Luguang Qi, Shutian Xuanyuan, Chang Li, Xiaomeng Zhou, Yang Ye, Ying Sun, Hongxun Hao and Chuang Xie*, 
{"title":"共聚物中官能团位置对三元共晶体的影响:磺酰胺基苯甲酸的一个案例","authors":"Luguang Qi,&nbsp;Shutian Xuanyuan,&nbsp;Chang Li,&nbsp;Xiaomeng Zhou,&nbsp;Yang Ye,&nbsp;Ying Sun,&nbsp;Hongxun Hao and Chuang Xie*,&nbsp;","doi":"10.1021/acs.cgd.4c0055010.1021/acs.cgd.4c00550","DOIUrl":null,"url":null,"abstract":"<p >Ternary cocrystals are an interesting and important topic of multicomponent crystals in crystal engineering. Although some cases of ternary cocrystals and strategies have been reported, the number remains limited, and the related principles are not yet well developed. Herein, 4-chloro-3-sulfamoylbenzoic acid and 2,4-dichloro-5-sulfamolybenzoic acid were selected as model materials, and pyridine carboxamides (picolinamide, nicotinamide, and isonicotinamide) and lactams (2-hydroxy-3-methylpyridine, 2-pyridone, and 2-hydroxy-6-methylpyridine) were used as coformers for synthesizing ternary cocrystals. With the help of powder X-ray diffraction, thermal analysis, and nuclear magnetic resonance spectra, four new ternary cocrystals were found, and the single crystal structures of three of them were successfully analyzed. The functional group position in coformers is found to have two effects on ternary cocrystals. On the one hand, it affects the tendency to generate binary products. On the other hand, there is a certain match between the two types of coformers. Further theoretical calculations show that geometrical recognition among the three components is more important for the formation of ternary cocrystals than the lattice energy.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"24 18","pages":"7455–7465 7455–7465"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the Functional Group Position in Coformers on Ternary Cocrystals: A Case of Sulfamoylbenzoic Acids\",\"authors\":\"Luguang Qi,&nbsp;Shutian Xuanyuan,&nbsp;Chang Li,&nbsp;Xiaomeng Zhou,&nbsp;Yang Ye,&nbsp;Ying Sun,&nbsp;Hongxun Hao and Chuang Xie*,&nbsp;\",\"doi\":\"10.1021/acs.cgd.4c0055010.1021/acs.cgd.4c00550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ternary cocrystals are an interesting and important topic of multicomponent crystals in crystal engineering. Although some cases of ternary cocrystals and strategies have been reported, the number remains limited, and the related principles are not yet well developed. Herein, 4-chloro-3-sulfamoylbenzoic acid and 2,4-dichloro-5-sulfamolybenzoic acid were selected as model materials, and pyridine carboxamides (picolinamide, nicotinamide, and isonicotinamide) and lactams (2-hydroxy-3-methylpyridine, 2-pyridone, and 2-hydroxy-6-methylpyridine) were used as coformers for synthesizing ternary cocrystals. With the help of powder X-ray diffraction, thermal analysis, and nuclear magnetic resonance spectra, four new ternary cocrystals were found, and the single crystal structures of three of them were successfully analyzed. The functional group position in coformers is found to have two effects on ternary cocrystals. On the one hand, it affects the tendency to generate binary products. On the other hand, there is a certain match between the two types of coformers. Further theoretical calculations show that geometrical recognition among the three components is more important for the formation of ternary cocrystals than the lattice energy.</p>\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":\"24 18\",\"pages\":\"7455–7465 7455–7465\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.4c00550\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c00550","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

三元共晶体是晶体工程中多组分晶体的一个有趣而重要的课题。虽然已有一些三元共晶体的案例和策略的报道,但数量仍然有限,相关的原理也尚未完善。本文以 4-氯-3-磺酰胺基苯甲酸和 2,4-二氯-5-磺酰胺基苯甲酸为模型材料,以吡啶羧酰胺类(吡啶酰胺、烟酰胺和异烟酰胺)和内酰胺类(2-羟基-3-甲基吡啶、2-吡啶酮和 2-羟基-6-甲基吡啶)为辅料,合成了三元共晶体。借助粉末 X 射线衍射、热分析和核磁共振波谱,发现了四种新的三元共晶体,并成功分析了其中三种共晶体的单晶结构。研究发现,共聚物中官能团的位置对三元共晶体有两种影响。一方面,它会影响生成二元产物的趋势。另一方面,两类共聚物之间存在一定的匹配关系。进一步的理论计算表明,对于三元共晶体的形成来说,三种成分之间的几何识别比晶格能更为重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of the Functional Group Position in Coformers on Ternary Cocrystals: A Case of Sulfamoylbenzoic Acids

Ternary cocrystals are an interesting and important topic of multicomponent crystals in crystal engineering. Although some cases of ternary cocrystals and strategies have been reported, the number remains limited, and the related principles are not yet well developed. Herein, 4-chloro-3-sulfamoylbenzoic acid and 2,4-dichloro-5-sulfamolybenzoic acid were selected as model materials, and pyridine carboxamides (picolinamide, nicotinamide, and isonicotinamide) and lactams (2-hydroxy-3-methylpyridine, 2-pyridone, and 2-hydroxy-6-methylpyridine) were used as coformers for synthesizing ternary cocrystals. With the help of powder X-ray diffraction, thermal analysis, and nuclear magnetic resonance spectra, four new ternary cocrystals were found, and the single crystal structures of three of them were successfully analyzed. The functional group position in coformers is found to have two effects on ternary cocrystals. On the one hand, it affects the tendency to generate binary products. On the other hand, there is a certain match between the two types of coformers. Further theoretical calculations show that geometrical recognition among the three components is more important for the formation of ternary cocrystals than the lattice energy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Bulk Crystal Growth and Single-Crystal-to-Single-Crystal Phase Transitions in the Averievite CsClCu5V2O10 Dirty Nucleation of Salicylic Acid Using Chemical Substitution to Engineer Photomechanical Cinnamalmalononitrile Crystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1