Marco De Angeli , Panagiotis Tolias , Francisco Suzuki-Vidal , Dario Ripamonti , Tim Ringrose , Hugo Doyle , Giambattista Daminelli , Jay Shadbolt , Peter Jarvis , Monica De Angeli
{"title":"普通高速固体尘埃对托卡马克相关温度瓷砖的撞击","authors":"Marco De Angeli , Panagiotis Tolias , Francisco Suzuki-Vidal , Dario Ripamonti , Tim Ringrose , Hugo Doyle , Giambattista Daminelli , Jay Shadbolt , Peter Jarvis , Monica De Angeli","doi":"10.1016/j.nme.2024.101735","DOIUrl":null,"url":null,"abstract":"<div><p>Runaway electron incidence on plasma facing components triggers explosive events that are accompanied by the expulsion of fast solid debris. Subsequent dust-wall high speed impacts constitute a mechanism of wall damage and dust destruction. Empirical damage laws that can be employed for erosion estimates are based on room-temperature impact experiments. We use light-gas gun shooting systems to accelerate solid tungsten dust to near-supersonic speeds towards bulk tungsten targets that are maintained at different temperatures. This concerns targets cooled down to <span><math><mrow><mo>−</mo><mn>100</mn><mo>°</mo></mrow></math></span>C with liquid nitrogen and targets resistively heated up to 400 °C. Post-mortem surface analysis reveals that the three erosion regimes (plastic deformation, bonding, partial disintegration) weakly depend on the target temperature within the investigated range. It is concluded that empirical damage laws based on room-temperature measurements can be safely employed for predictions.</p></div>","PeriodicalId":56004,"journal":{"name":"Nuclear Materials and Energy","volume":"41 ","pages":"Article 101735"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352179124001583/pdfft?md5=8ebb6e275c20f595ab26057a8f70c27f&pid=1-s2.0-S2352179124001583-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Normal high velocity solid dust impacts on tiles of tokamak-relevant temperature\",\"authors\":\"Marco De Angeli , Panagiotis Tolias , Francisco Suzuki-Vidal , Dario Ripamonti , Tim Ringrose , Hugo Doyle , Giambattista Daminelli , Jay Shadbolt , Peter Jarvis , Monica De Angeli\",\"doi\":\"10.1016/j.nme.2024.101735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Runaway electron incidence on plasma facing components triggers explosive events that are accompanied by the expulsion of fast solid debris. Subsequent dust-wall high speed impacts constitute a mechanism of wall damage and dust destruction. Empirical damage laws that can be employed for erosion estimates are based on room-temperature impact experiments. We use light-gas gun shooting systems to accelerate solid tungsten dust to near-supersonic speeds towards bulk tungsten targets that are maintained at different temperatures. This concerns targets cooled down to <span><math><mrow><mo>−</mo><mn>100</mn><mo>°</mo></mrow></math></span>C with liquid nitrogen and targets resistively heated up to 400 °C. Post-mortem surface analysis reveals that the three erosion regimes (plastic deformation, bonding, partial disintegration) weakly depend on the target temperature within the investigated range. It is concluded that empirical damage laws based on room-temperature measurements can be safely employed for predictions.</p></div>\",\"PeriodicalId\":56004,\"journal\":{\"name\":\"Nuclear Materials and Energy\",\"volume\":\"41 \",\"pages\":\"Article 101735\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352179124001583/pdfft?md5=8ebb6e275c20f595ab26057a8f70c27f&pid=1-s2.0-S2352179124001583-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Materials and Energy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352179124001583\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Materials and Energy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352179124001583","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Normal high velocity solid dust impacts on tiles of tokamak-relevant temperature
Runaway electron incidence on plasma facing components triggers explosive events that are accompanied by the expulsion of fast solid debris. Subsequent dust-wall high speed impacts constitute a mechanism of wall damage and dust destruction. Empirical damage laws that can be employed for erosion estimates are based on room-temperature impact experiments. We use light-gas gun shooting systems to accelerate solid tungsten dust to near-supersonic speeds towards bulk tungsten targets that are maintained at different temperatures. This concerns targets cooled down to C with liquid nitrogen and targets resistively heated up to 400 °C. Post-mortem surface analysis reveals that the three erosion regimes (plastic deformation, bonding, partial disintegration) weakly depend on the target temperature within the investigated range. It is concluded that empirical damage laws based on room-temperature measurements can be safely employed for predictions.
期刊介绍:
The open-access journal Nuclear Materials and Energy is devoted to the growing field of research for material application in the production of nuclear energy. Nuclear Materials and Energy publishes original research articles of up to 6 pages in length.