基于代理的模拟揭示了局部隔离是拯救生命和资源的关键

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Physica A: Statistical Mechanics and its Applications Pub Date : 2024-09-14 DOI:10.1016/j.physa.2024.130097
{"title":"基于代理的模拟揭示了局部隔离是拯救生命和资源的关键","authors":"","doi":"10.1016/j.physa.2024.130097","DOIUrl":null,"url":null,"abstract":"<div><p>In the realm of pandemic dynamics, understanding the intricate interplay between disease transmission, interventions, and immunity is pivotal for effective control strategies. Through a rigorous agent-based computer simulation, we embarked on a comprehensive exploration, traversing unmitigated spread, lockdown scenarios, and the transformative potential of vaccination. we unveil that while quarantine unquestionably delays the pandemic peak, it does not act as an impenetrable barrier to halt the progression of infectious diseases. Vaccination factor revealed a potent weapon against outbreaks — higher vaccination percentage not only delayed infection peaks but also substantially curtailed their impact. Our investigation into bond dilution below the percolation threshold presents an additional dimension to pandemic control. We observed that localized isolation through bond dilution offers a more resource-efficient targeted control strategy than blanket lockdowns or large-scale vaccination campaigns.</p></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agent-Based simulation reveals localized isolation key to saving lives and resources\",\"authors\":\"\",\"doi\":\"10.1016/j.physa.2024.130097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the realm of pandemic dynamics, understanding the intricate interplay between disease transmission, interventions, and immunity is pivotal for effective control strategies. Through a rigorous agent-based computer simulation, we embarked on a comprehensive exploration, traversing unmitigated spread, lockdown scenarios, and the transformative potential of vaccination. we unveil that while quarantine unquestionably delays the pandemic peak, it does not act as an impenetrable barrier to halt the progression of infectious diseases. Vaccination factor revealed a potent weapon against outbreaks — higher vaccination percentage not only delayed infection peaks but also substantially curtailed their impact. Our investigation into bond dilution below the percolation threshold presents an additional dimension to pandemic control. We observed that localized isolation through bond dilution offers a more resource-efficient targeted control strategy than blanket lockdowns or large-scale vaccination campaigns.</p></div>\",\"PeriodicalId\":20152,\"journal\":{\"name\":\"Physica A: Statistical Mechanics and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica A: Statistical Mechanics and its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037843712400606X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037843712400606X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在大流行病动力学领域,了解疾病传播、干预和免疫之间错综复杂的相互作用对于制定有效的控制策略至关重要。通过严格的基于代理的计算机模拟,我们开始了全面的探索,包括无限制传播、封锁情景以及疫苗接种的变革潜力。我们发现,虽然隔离无疑会推迟大流行的高峰期,但它并不能成为阻止传染病发展的坚不可摧的屏障。疫苗接种因素揭示了抗击疾病爆发的有力武器--较高的疫苗接种率不仅能延缓感染高峰,还能大幅降低其影响。我们对低于渗透阈值的键稀释的研究为大流行病的控制提供了一个新的维度。我们发现,与全面封锁或大规模疫苗接种活动相比,通过债券稀释进行局部隔离是一种更具资源效率的定向控制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Agent-Based simulation reveals localized isolation key to saving lives and resources

In the realm of pandemic dynamics, understanding the intricate interplay between disease transmission, interventions, and immunity is pivotal for effective control strategies. Through a rigorous agent-based computer simulation, we embarked on a comprehensive exploration, traversing unmitigated spread, lockdown scenarios, and the transformative potential of vaccination. we unveil that while quarantine unquestionably delays the pandemic peak, it does not act as an impenetrable barrier to halt the progression of infectious diseases. Vaccination factor revealed a potent weapon against outbreaks — higher vaccination percentage not only delayed infection peaks but also substantially curtailed their impact. Our investigation into bond dilution below the percolation threshold presents an additional dimension to pandemic control. We observed that localized isolation through bond dilution offers a more resource-efficient targeted control strategy than blanket lockdowns or large-scale vaccination campaigns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
期刊最新文献
Analysis of investment behavior among Filipinos: Integration of Social exchange theory (SET) and the Theory of planned behavior (TPB) Can Bitcoin trigger speculative pressures on the US Dollar? A novel ARIMA-EGARCH-Wavelet Neural Networks Impact of surface-roughness and fractality on electrical conductivity of SnS thin films Ethereum futures and the efficiency of cryptocurrency spot markets Role of delay in brain dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1