G. Mustafa , Emre Demir , Akbar Davlataliev , Himanshu Chaudhary , Farruh Atamurotov , Ertan Güdekli
{"title":"被完美流体暗物质包围的非交换性施瓦兹柴尔德黑洞周围粒子运动的 QPO 观测特征","authors":"G. Mustafa , Emre Demir , Akbar Davlataliev , Himanshu Chaudhary , Farruh Atamurotov , Ertan Güdekli","doi":"10.1016/j.dark.2024.101644","DOIUrl":null,"url":null,"abstract":"<div><p>We analyze the orbital and oscillatory motion of test particles in the vicinity of a non-commutative black hole submerged in perfect fluid dark matter and derive analytical solutions for the specific angular momentum and radial profiles of energy. Using the effective potential approach, we discuss the stability of circular orbits. Furthermore, we calculate the innermost stable circular orbits. The effective force acting on particles has also been discussed. We find the expressions for frequencies of radial and latitudinal harmonic oscillations as a function of the black hole mass and the model’s parameters. The key features of quasi-periodic oscillations of test particles near the stable circular orbits in an equatorial plane of the black hole are discussed. Furthermore, Periastron precession has been discussed. We demonstrate that the parameters of the model have a strong influence on particle motion around black holes. By using the observational data of four different X-ray binary systems GRO J1655-40, XTE J1550-564, XTE J1859+226, and GRS 1915+105, within the scope of Monte Carlo Markov Chain, we constrain the involved parameters <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span>. It is necessary to mention that our presented investigations through graphical behavior are viable with required physical behavior.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101644"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observational signature of QPOs with particle motion around non-commutative Schwarzschild black hole surrounded by perfect fluid dark matter\",\"authors\":\"G. Mustafa , Emre Demir , Akbar Davlataliev , Himanshu Chaudhary , Farruh Atamurotov , Ertan Güdekli\",\"doi\":\"10.1016/j.dark.2024.101644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We analyze the orbital and oscillatory motion of test particles in the vicinity of a non-commutative black hole submerged in perfect fluid dark matter and derive analytical solutions for the specific angular momentum and radial profiles of energy. Using the effective potential approach, we discuss the stability of circular orbits. Furthermore, we calculate the innermost stable circular orbits. The effective force acting on particles has also been discussed. We find the expressions for frequencies of radial and latitudinal harmonic oscillations as a function of the black hole mass and the model’s parameters. The key features of quasi-periodic oscillations of test particles near the stable circular orbits in an equatorial plane of the black hole are discussed. Furthermore, Periastron precession has been discussed. We demonstrate that the parameters of the model have a strong influence on particle motion around black holes. By using the observational data of four different X-ray binary systems GRO J1655-40, XTE J1550-564, XTE J1859+226, and GRS 1915+105, within the scope of Monte Carlo Markov Chain, we constrain the involved parameters <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span>. It is necessary to mention that our presented investigations through graphical behavior are viable with required physical behavior.</p></div>\",\"PeriodicalId\":48774,\"journal\":{\"name\":\"Physics of the Dark Universe\",\"volume\":\"46 \",\"pages\":\"Article 101644\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Dark Universe\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212686424002267\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686424002267","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Observational signature of QPOs with particle motion around non-commutative Schwarzschild black hole surrounded by perfect fluid dark matter
We analyze the orbital and oscillatory motion of test particles in the vicinity of a non-commutative black hole submerged in perfect fluid dark matter and derive analytical solutions for the specific angular momentum and radial profiles of energy. Using the effective potential approach, we discuss the stability of circular orbits. Furthermore, we calculate the innermost stable circular orbits. The effective force acting on particles has also been discussed. We find the expressions for frequencies of radial and latitudinal harmonic oscillations as a function of the black hole mass and the model’s parameters. The key features of quasi-periodic oscillations of test particles near the stable circular orbits in an equatorial plane of the black hole are discussed. Furthermore, Periastron precession has been discussed. We demonstrate that the parameters of the model have a strong influence on particle motion around black holes. By using the observational data of four different X-ray binary systems GRO J1655-40, XTE J1550-564, XTE J1859+226, and GRS 1915+105, within the scope of Monte Carlo Markov Chain, we constrain the involved parameters and . It is necessary to mention that our presented investigations through graphical behavior are viable with required physical behavior.
期刊介绍:
Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact.
The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.