多变量时间序列中基于模型的在线异常检测:分类、调查、研究挑战和未来方向

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Engineering Applications of Artificial Intelligence Pub Date : 2024-09-17 DOI:10.1016/j.engappai.2024.109323
{"title":"多变量时间序列中基于模型的在线异常检测:分类、调查、研究挑战和未来方向","authors":"","doi":"10.1016/j.engappai.2024.109323","DOIUrl":null,"url":null,"abstract":"<div><p>Time-series anomaly detection plays an important role in engineering processes, like development, manufacturing and other operations involving dynamic systems. These processes can greatly benefit from advances in the field, as state-of-the-art approaches may aid in cases involving, for example, highly dimensional data. To provide the reader with understanding of the terminology, this survey introduces a novel taxonomy where a distinction between online and offline, and training and inference is made. Additionally, it presents the most popular data sets and evaluation metrics used in the literature, as well as a detailed analysis. Furthermore, this survey provides an extensive overview of the state-of-the-art model-based online semi- and unsupervised anomaly detection approaches for multivariate time-series data, categorising them into different model families and other properties. The biggest research challenge revolves around benchmarking, as currently there is no reliable way to compare different approaches against one another. This problem is two-fold: on the one hand, public data sets suffers from at least one fundamental flaw, while on the other hand, there is a lack of intuitive and representative evaluation metrics in the field. Moreover, the way most publications choose a detection threshold disregards real-world conditions, which hinders the application in the real world. To allow for tangible advances in the field, these issues must be addressed in future work.</p></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0952197624014817/pdfft?md5=78aaf78728e6be137ef00bb75f95fe3b&pid=1-s2.0-S0952197624014817-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Online model-based anomaly detection in multivariate time series: Taxonomy, survey, research challenges and future directions\",\"authors\":\"\",\"doi\":\"10.1016/j.engappai.2024.109323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Time-series anomaly detection plays an important role in engineering processes, like development, manufacturing and other operations involving dynamic systems. These processes can greatly benefit from advances in the field, as state-of-the-art approaches may aid in cases involving, for example, highly dimensional data. To provide the reader with understanding of the terminology, this survey introduces a novel taxonomy where a distinction between online and offline, and training and inference is made. Additionally, it presents the most popular data sets and evaluation metrics used in the literature, as well as a detailed analysis. Furthermore, this survey provides an extensive overview of the state-of-the-art model-based online semi- and unsupervised anomaly detection approaches for multivariate time-series data, categorising them into different model families and other properties. The biggest research challenge revolves around benchmarking, as currently there is no reliable way to compare different approaches against one another. This problem is two-fold: on the one hand, public data sets suffers from at least one fundamental flaw, while on the other hand, there is a lack of intuitive and representative evaluation metrics in the field. Moreover, the way most publications choose a detection threshold disregards real-world conditions, which hinders the application in the real world. To allow for tangible advances in the field, these issues must be addressed in future work.</p></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0952197624014817/pdfft?md5=78aaf78728e6be137ef00bb75f95fe3b&pid=1-s2.0-S0952197624014817-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624014817\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624014817","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

时间序列异常检测在工程流程(如开发、制造和其他涉及动态系统的操作)中发挥着重要作用。这些过程可以从该领域的进步中获益匪浅,因为最先进的方法可以在涉及高维数据等情况下提供帮助。为了让读者理解这些术语,本调查报告引入了一种新的分类方法,对在线和离线、训练和推理进行了区分。此外,它还介绍了文献中最常用的数据集和评估指标,并进行了详细分析。此外,本调查报告还广泛概述了最先进的基于模型的多变量时间序列数据在线半监督和无监督异常检测方法,并将其分为不同的模型系列和其他属性。最大的研究挑战围绕基准设定,因为目前还没有可靠的方法来比较不同的方法。这个问题有两个方面:一方面,公共数据集至少存在一个基本缺陷;另一方面,该领域缺乏直观、有代表性的评估指标。此外,大多数出版物选择检测阈值的方式忽视了现实世界的条件,这阻碍了在现实世界中的应用。为了使该领域取得切实进展,这些问题必须在今后的工作中加以解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online model-based anomaly detection in multivariate time series: Taxonomy, survey, research challenges and future directions

Time-series anomaly detection plays an important role in engineering processes, like development, manufacturing and other operations involving dynamic systems. These processes can greatly benefit from advances in the field, as state-of-the-art approaches may aid in cases involving, for example, highly dimensional data. To provide the reader with understanding of the terminology, this survey introduces a novel taxonomy where a distinction between online and offline, and training and inference is made. Additionally, it presents the most popular data sets and evaluation metrics used in the literature, as well as a detailed analysis. Furthermore, this survey provides an extensive overview of the state-of-the-art model-based online semi- and unsupervised anomaly detection approaches for multivariate time-series data, categorising them into different model families and other properties. The biggest research challenge revolves around benchmarking, as currently there is no reliable way to compare different approaches against one another. This problem is two-fold: on the one hand, public data sets suffers from at least one fundamental flaw, while on the other hand, there is a lack of intuitive and representative evaluation metrics in the field. Moreover, the way most publications choose a detection threshold disregards real-world conditions, which hinders the application in the real world. To allow for tangible advances in the field, these issues must be addressed in future work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
期刊最新文献
Constrained multi-objective optimization assisted by convergence and diversity auxiliary tasks A deep sequence-to-sequence model for power swing blocking of distance protection in power transmission lines A Chinese named entity recognition method for landslide geological disasters based on deep learning A deep learning ensemble approach for malware detection in Internet of Things utilizing Explainable Artificial Intelligence Evaluating the financial credibility of third-party logistic providers through a novel frank operators-driven group decision-making model with dual hesitant linguistic q-rung orthopair fuzzy information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1