Syed Haris Iftikhar , Nizamudeen Cherupurakal , Krishnapriya R. , Abdel-Hamid Ismail Mourad
{"title":"回收废热塑性塑料的搅拌摩擦点焊","authors":"Syed Haris Iftikhar , Nizamudeen Cherupurakal , Krishnapriya R. , Abdel-Hamid Ismail Mourad","doi":"10.1016/j.ijlmm.2024.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>There is a real demand for sustainable lightweight structures because of the growing environmental concerns. One important solution is developing structures through recycled scrap/waste thermoplastic materials. The current work studies the friction stir spot weldability of recycled thermoplastics, which will help to analyze the potential of friction stir-based welding techniques towards developing these sustainable structures. The combined behavior of recycling-welding procedures is investigated, as they may cause degradations; to ensure that the base thermoplastic polymer's chemical, thermal, and mechanical properties are retained. Scrapped milk bottles made from HDPE material are used as a case study. The highest lap-shear load of 1528 N was achieved at the optimum welding conditions of 1600 rpm rotational speed, 1 mm plunge depth, and 60 s dwell time. Fractographic studies (macroscopic and SEM-based) suggested four types of fracture morphologies depending on welding conditions used. The DSC results showed no significant differences in melting temperature and crystalline content of the polymeric material. The TGA tests showed no significant thermal degradations. The FTIR analysis of all the samples (bottle, recycled sheet, weld material) exhibited characteristic HDPE peaks. All these results suggest combined-welding recycling had a minimal impact on the polymeric structure. Thus, friction stir spot welding (FSSW) technique joins recycled thermoplastic scrap/waste materials with high lap-shear load and without any significant polymer degradations.</p></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":"7 6","pages":"Pages 838-848"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588840424000544/pdfft?md5=4a87e8814e68465f17316b946cd1103a&pid=1-s2.0-S2588840424000544-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Friction stir spot welding of recycled scrap thermoplastics\",\"authors\":\"Syed Haris Iftikhar , Nizamudeen Cherupurakal , Krishnapriya R. , Abdel-Hamid Ismail Mourad\",\"doi\":\"10.1016/j.ijlmm.2024.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There is a real demand for sustainable lightweight structures because of the growing environmental concerns. One important solution is developing structures through recycled scrap/waste thermoplastic materials. The current work studies the friction stir spot weldability of recycled thermoplastics, which will help to analyze the potential of friction stir-based welding techniques towards developing these sustainable structures. The combined behavior of recycling-welding procedures is investigated, as they may cause degradations; to ensure that the base thermoplastic polymer's chemical, thermal, and mechanical properties are retained. Scrapped milk bottles made from HDPE material are used as a case study. The highest lap-shear load of 1528 N was achieved at the optimum welding conditions of 1600 rpm rotational speed, 1 mm plunge depth, and 60 s dwell time. Fractographic studies (macroscopic and SEM-based) suggested four types of fracture morphologies depending on welding conditions used. The DSC results showed no significant differences in melting temperature and crystalline content of the polymeric material. The TGA tests showed no significant thermal degradations. The FTIR analysis of all the samples (bottle, recycled sheet, weld material) exhibited characteristic HDPE peaks. All these results suggest combined-welding recycling had a minimal impact on the polymeric structure. Thus, friction stir spot welding (FSSW) technique joins recycled thermoplastic scrap/waste materials with high lap-shear load and without any significant polymer degradations.</p></div>\",\"PeriodicalId\":52306,\"journal\":{\"name\":\"International Journal of Lightweight Materials and Manufacture\",\"volume\":\"7 6\",\"pages\":\"Pages 838-848\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2588840424000544/pdfft?md5=4a87e8814e68465f17316b946cd1103a&pid=1-s2.0-S2588840424000544-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Lightweight Materials and Manufacture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588840424000544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Lightweight Materials and Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588840424000544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
摘要
由于对环境的日益关注,人们对可持续的轻质结构有着切实的需求。一个重要的解决方案是利用回收的废料/废热塑性材料开发结构。目前的工作研究了回收热塑性塑料的搅拌摩擦点焊性,这将有助于分析基于搅拌摩擦的焊接技术在开发这些可持续结构方面的潜力。由于回收-焊接程序可能会导致降解,因此要对其综合行为进行研究,以确保基础热塑性聚合物的化学、热和机械性能得以保留。以高密度聚乙烯材料制成的报废牛奶瓶为例进行研究。在转速为 1600 rpm、切入深度为 1 mm、停留时间为 60 s 的最佳焊接条件下,达到了 1528 N 的最高搭接剪切载荷。断口形貌研究(基于宏观和扫描电子显微镜)表明,根据所使用的焊接条件,有四种断口形貌。DSC 结果显示,聚合物材料的熔化温度和结晶含量没有明显差异。TGA 测试显示没有明显的热降解。所有样品(瓶子、回收板材、焊接材料)的傅立叶变换红外光谱分析都显示出特征性的高密度聚乙烯峰值。所有这些结果表明,组合焊接回收对聚合物结构的影响微乎其微。因此,摩擦搅拌点焊(FSSW)技术可将回收的热塑性废料/废弃材料连接在一起,具有较高的搭接剪切载荷,且不会造成任何明显的聚合物降解。
Friction stir spot welding of recycled scrap thermoplastics
There is a real demand for sustainable lightweight structures because of the growing environmental concerns. One important solution is developing structures through recycled scrap/waste thermoplastic materials. The current work studies the friction stir spot weldability of recycled thermoplastics, which will help to analyze the potential of friction stir-based welding techniques towards developing these sustainable structures. The combined behavior of recycling-welding procedures is investigated, as they may cause degradations; to ensure that the base thermoplastic polymer's chemical, thermal, and mechanical properties are retained. Scrapped milk bottles made from HDPE material are used as a case study. The highest lap-shear load of 1528 N was achieved at the optimum welding conditions of 1600 rpm rotational speed, 1 mm plunge depth, and 60 s dwell time. Fractographic studies (macroscopic and SEM-based) suggested four types of fracture morphologies depending on welding conditions used. The DSC results showed no significant differences in melting temperature and crystalline content of the polymeric material. The TGA tests showed no significant thermal degradations. The FTIR analysis of all the samples (bottle, recycled sheet, weld material) exhibited characteristic HDPE peaks. All these results suggest combined-welding recycling had a minimal impact on the polymeric structure. Thus, friction stir spot welding (FSSW) technique joins recycled thermoplastic scrap/waste materials with high lap-shear load and without any significant polymer degradations.