多变量时间序列的标度包络模型

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Journal of Multivariate Analysis Pub Date : 2024-09-13 DOI:10.1016/j.jmva.2024.105370
H.M. Wiranthe B. Herath , S. Yaser Samadi
{"title":"多变量时间序列的标度包络模型","authors":"H.M. Wiranthe B. Herath ,&nbsp;S. Yaser Samadi","doi":"10.1016/j.jmva.2024.105370","DOIUrl":null,"url":null,"abstract":"<div><p>Vector autoregressive (VAR) models have become a popular choice for modeling multivariate time series data due to their simplicity and ease of use. Efficient estimation of VAR coefficients is an important problem. The envelope technique for VAR models is demonstrated to have the potential to yield significant gains in efficiency and accuracy by incorporating linear combinations of the response vector that are essentially immaterial to the estimation of the VAR coefficients. However, inferences based on envelope VAR (EVAR) models are not invariant or equivariant upon the rescaling of the VAR responses, limiting their application to time series data that are measured in the same or similar units. In scenarios where VAR responses are measured on different scales, the efficiency improvements promised by envelopes are not always guaranteed. To address this limitation, we introduce the scaled envelope VAR (SEVAR) model, which preserves the efficiency-boosting capabilities of standard envelope techniques while remaining invariant to scale changes. The asymptotic characteristics of the proposed estimators are established based on different error assumptions. Simulation studies and real-data analysis are conducted to demonstrate the efficiency and effectiveness of the proposed model. The numerical results corroborate our theoretical findings.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"205 ","pages":"Article 105370"},"PeriodicalIF":1.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047259X24000770/pdfft?md5=bcb10a9c98d350b55789c52bc615d145&pid=1-s2.0-S0047259X24000770-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Scaled envelope models for multivariate time series\",\"authors\":\"H.M. Wiranthe B. Herath ,&nbsp;S. Yaser Samadi\",\"doi\":\"10.1016/j.jmva.2024.105370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vector autoregressive (VAR) models have become a popular choice for modeling multivariate time series data due to their simplicity and ease of use. Efficient estimation of VAR coefficients is an important problem. The envelope technique for VAR models is demonstrated to have the potential to yield significant gains in efficiency and accuracy by incorporating linear combinations of the response vector that are essentially immaterial to the estimation of the VAR coefficients. However, inferences based on envelope VAR (EVAR) models are not invariant or equivariant upon the rescaling of the VAR responses, limiting their application to time series data that are measured in the same or similar units. In scenarios where VAR responses are measured on different scales, the efficiency improvements promised by envelopes are not always guaranteed. To address this limitation, we introduce the scaled envelope VAR (SEVAR) model, which preserves the efficiency-boosting capabilities of standard envelope techniques while remaining invariant to scale changes. The asymptotic characteristics of the proposed estimators are established based on different error assumptions. Simulation studies and real-data analysis are conducted to demonstrate the efficiency and effectiveness of the proposed model. The numerical results corroborate our theoretical findings.</p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"205 \",\"pages\":\"Article 105370\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000770/pdfft?md5=bcb10a9c98d350b55789c52bc615d145&pid=1-s2.0-S0047259X24000770-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000770\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000770","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

向量自回归(VAR)模型因其简单易用,已成为多变量时间序列数据建模的热门选择。有效估计 VAR 系数是一个重要问题。VAR 模型的包络技术通过纳入对 VAR 系数估计基本无关紧要的响应向量的线性组合,被证明具有显著提高效率和准确性的潜力。然而,基于包络 VAR(EVAR)模型的推论在对 VAR 响应进行重新缩放时并不不变或等变,这限制了其在以相同或相似单位测量的时间序列数据中的应用。在 VAR 响应以不同尺度测量的情况下,包络所承诺的效率改进并不总是有保证的。为了解决这一局限性,我们引入了缩放包络 VAR(SEVAR)模型,它既保留了标准包络技术的效率提升功能,又不受尺度变化的影响。基于不同的误差假设,建立了所提出估计器的渐近特性。通过仿真研究和实际数据分析,证明了所提模型的效率和有效性。数值结果证实了我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scaled envelope models for multivariate time series

Vector autoregressive (VAR) models have become a popular choice for modeling multivariate time series data due to their simplicity and ease of use. Efficient estimation of VAR coefficients is an important problem. The envelope technique for VAR models is demonstrated to have the potential to yield significant gains in efficiency and accuracy by incorporating linear combinations of the response vector that are essentially immaterial to the estimation of the VAR coefficients. However, inferences based on envelope VAR (EVAR) models are not invariant or equivariant upon the rescaling of the VAR responses, limiting their application to time series data that are measured in the same or similar units. In scenarios where VAR responses are measured on different scales, the efficiency improvements promised by envelopes are not always guaranteed. To address this limitation, we introduce the scaled envelope VAR (SEVAR) model, which preserves the efficiency-boosting capabilities of standard envelope techniques while remaining invariant to scale changes. The asymptotic characteristics of the proposed estimators are established based on different error assumptions. Simulation studies and real-data analysis are conducted to demonstrate the efficiency and effectiveness of the proposed model. The numerical results corroborate our theoretical findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
期刊最新文献
Maximum likelihood estimation of elliptical tail Covariance parameter estimation of Gaussian processes with approximated functional inputs PDE-regularised spatial quantile regression Diagnostic checking of periodic vector autoregressive time series models with dependent errors A conditional distribution function-based measure for independence and K-sample tests in multivariate data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1