经偏差校正的斯里瓦斯塔瓦式横截面独立性检验

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Journal of Multivariate Analysis Pub Date : 2024-09-13 DOI:10.1016/j.jmva.2024.105371
Kai Xu , Mingxiang Cao , Qing Cheng
{"title":"经偏差校正的斯里瓦斯塔瓦式横截面独立性检验","authors":"Kai Xu ,&nbsp;Mingxiang Cao ,&nbsp;Qing Cheng","doi":"10.1016/j.jmva.2024.105371","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a test for cross-sectional independence with high dimensional panel data. It uses the random matrix theory based approach of Srivastava (2005) in the presence of a large number of cross-sectional units and time series observations. Because the errors are unobservable, the residuals from the regression model for panel data are used. We develop a bias-corrected test after adjusting for the contribution from the regressors. With the aid of the martingale central limit theorem, we prove that the limiting null distribution of the proposed test statistic is normal under mild conditions as cross-sectional dimension and time dimension go to infinity together. We further study the asymptotic relative efficiency of our proposed test with respect to the state-of-art Lagrange multiplier test. An interesting finding is that the newly proposed test can have substantial power gain when the underlying variance magnitudes are not identical across different units.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"205 ","pages":"Article 105371"},"PeriodicalIF":1.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047259X24000782/pdfft?md5=792309b6f97ca51742555998cfec1771&pid=1-s2.0-S0047259X24000782-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A bias-corrected Srivastava-type test for cross-sectional independence\",\"authors\":\"Kai Xu ,&nbsp;Mingxiang Cao ,&nbsp;Qing Cheng\",\"doi\":\"10.1016/j.jmva.2024.105371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a test for cross-sectional independence with high dimensional panel data. It uses the random matrix theory based approach of Srivastava (2005) in the presence of a large number of cross-sectional units and time series observations. Because the errors are unobservable, the residuals from the regression model for panel data are used. We develop a bias-corrected test after adjusting for the contribution from the regressors. With the aid of the martingale central limit theorem, we prove that the limiting null distribution of the proposed test statistic is normal under mild conditions as cross-sectional dimension and time dimension go to infinity together. We further study the asymptotic relative efficiency of our proposed test with respect to the state-of-art Lagrange multiplier test. An interesting finding is that the newly proposed test can have substantial power gain when the underlying variance magnitudes are not identical across different units.</p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"205 \",\"pages\":\"Article 105371\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000782/pdfft?md5=792309b6f97ca51742555998cfec1771&pid=1-s2.0-S0047259X24000782-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000782\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000782","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用高维面板数据检验横截面独立性的方法。在存在大量横截面单位和时间序列观测值的情况下,它使用了 Srivastava(2005)基于随机矩阵理论的方法。由于误差是不可观测的,因此使用了面板数据回归模型的残差。在对回归因子的贡献进行调整后,我们开发了偏差校正检验。借助马氏中心极限定理,我们证明了在温和条件下,当横截面维度和时间维度同时达到无穷大时,所提出的检验统计量的极限零分布是正态分布。我们进一步研究了我们提出的检验与最先进的拉格朗日乘数检验的渐进相对效率。一个有趣的发现是,当不同单位的基本方差大小不完全相同时,新提出的检验可以获得很大的功率增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A bias-corrected Srivastava-type test for cross-sectional independence

This paper proposes a test for cross-sectional independence with high dimensional panel data. It uses the random matrix theory based approach of Srivastava (2005) in the presence of a large number of cross-sectional units and time series observations. Because the errors are unobservable, the residuals from the regression model for panel data are used. We develop a bias-corrected test after adjusting for the contribution from the regressors. With the aid of the martingale central limit theorem, we prove that the limiting null distribution of the proposed test statistic is normal under mild conditions as cross-sectional dimension and time dimension go to infinity together. We further study the asymptotic relative efficiency of our proposed test with respect to the state-of-art Lagrange multiplier test. An interesting finding is that the newly proposed test can have substantial power gain when the underlying variance magnitudes are not identical across different units.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
期刊最新文献
Maximum likelihood estimation of elliptical tail Covariance parameter estimation of Gaussian processes with approximated functional inputs PDE-regularised spatial quantile regression Diagnostic checking of periodic vector autoregressive time series models with dependent errors A conditional distribution function-based measure for independence and K-sample tests in multivariate data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1