多层地下车站的循环地震推移试验

IF 6.7 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Tunnelling and Underground Space Technology Pub Date : 2024-09-18 DOI:10.1016/j.tust.2024.106087
{"title":"多层地下车站的循环地震推移试验","authors":"","doi":"10.1016/j.tust.2024.106087","DOIUrl":null,"url":null,"abstract":"<div><p>The experimental approach is crucial for investigating the seismic performance and damage process of underground structures. Considering the shortcomings of the 1-g, centrifuge shaking table and monotonic displacement pushover tests, a large-scale cyclic displacement pushover test method is proposed based on the soil-underground structure dynamic interaction and seismic performance quantification system. Taking a two-story three-span subway station structure as the prototype, the cyclic displacement pushover test device was designed for a 1/7-scale multi-story subway station based on the seismic response characteristics of underground structures. The corresponding numerical simulations and experiments were conducted. Typical numerical results (including the seismic damage process, capacity curves of the structural columns, and strain response) and test results (the macroscopic phenomenon of structural damage development, strain response, and deformation response) are interpreted. The results show that the proposed cyclic displacement pushover test is better than the monotonic displacement pushover test, the damage process of the tested station structure conforms to the description of the inter-story drift ratio (IDR) quantification system of seismic performance. Meanwhile, the column has greater strain amplitudes than other components, and the column strain curves reach their peaks before other components. Furthermore, the tested station structure has a similar damage pattern to the Daikai subway station. The reliability and feasibility of the proposed cyclic displacement pushover test method are verified.</p></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyclic seismic pushover testing of a multi-story underground station\",\"authors\":\"\",\"doi\":\"10.1016/j.tust.2024.106087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The experimental approach is crucial for investigating the seismic performance and damage process of underground structures. Considering the shortcomings of the 1-g, centrifuge shaking table and monotonic displacement pushover tests, a large-scale cyclic displacement pushover test method is proposed based on the soil-underground structure dynamic interaction and seismic performance quantification system. Taking a two-story three-span subway station structure as the prototype, the cyclic displacement pushover test device was designed for a 1/7-scale multi-story subway station based on the seismic response characteristics of underground structures. The corresponding numerical simulations and experiments were conducted. Typical numerical results (including the seismic damage process, capacity curves of the structural columns, and strain response) and test results (the macroscopic phenomenon of structural damage development, strain response, and deformation response) are interpreted. The results show that the proposed cyclic displacement pushover test is better than the monotonic displacement pushover test, the damage process of the tested station structure conforms to the description of the inter-story drift ratio (IDR) quantification system of seismic performance. Meanwhile, the column has greater strain amplitudes than other components, and the column strain curves reach their peaks before other components. Furthermore, the tested station structure has a similar damage pattern to the Daikai subway station. The reliability and feasibility of the proposed cyclic displacement pushover test method are verified.</p></div>\",\"PeriodicalId\":49414,\"journal\":{\"name\":\"Tunnelling and Underground Space Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunnelling and Underground Space Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0886779824005054\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0886779824005054","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

试验方法对于研究地下结构的抗震性能和破坏过程至关重要。考虑到 1g、离心振动台和单调位移推移试验的不足,提出了基于土-地下结构动力相互作用和抗震性能量化体系的大尺度循环位移推移试验方法。以两层三跨地铁车站结构为原型,根据地下结构的地震反应特性,设计了 1/7 比例多层地铁车站的循环位移推移试验装置。并进行了相应的数值模拟和试验。对典型的数值结果(包括地震破坏过程、结构柱的承载力曲线和应变响应)和试验结果(结构破坏发展的宏观现象、应变响应和变形响应)进行了解释。结果表明,所提出的周期位移推移试验优于单调位移推移试验,被测车站结构的破坏过程符合抗震性能的层间漂移比(IDR)量化体系的描述。同时,柱的应变幅值大于其他构件,柱应变曲线先于其他构件达到峰值。此外,测试的车站结构具有与大开地铁站相似的破坏模式。验证了所提出的循环位移推移试验方法的可靠性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cyclic seismic pushover testing of a multi-story underground station

The experimental approach is crucial for investigating the seismic performance and damage process of underground structures. Considering the shortcomings of the 1-g, centrifuge shaking table and monotonic displacement pushover tests, a large-scale cyclic displacement pushover test method is proposed based on the soil-underground structure dynamic interaction and seismic performance quantification system. Taking a two-story three-span subway station structure as the prototype, the cyclic displacement pushover test device was designed for a 1/7-scale multi-story subway station based on the seismic response characteristics of underground structures. The corresponding numerical simulations and experiments were conducted. Typical numerical results (including the seismic damage process, capacity curves of the structural columns, and strain response) and test results (the macroscopic phenomenon of structural damage development, strain response, and deformation response) are interpreted. The results show that the proposed cyclic displacement pushover test is better than the monotonic displacement pushover test, the damage process of the tested station structure conforms to the description of the inter-story drift ratio (IDR) quantification system of seismic performance. Meanwhile, the column has greater strain amplitudes than other components, and the column strain curves reach their peaks before other components. Furthermore, the tested station structure has a similar damage pattern to the Daikai subway station. The reliability and feasibility of the proposed cyclic displacement pushover test method are verified.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tunnelling and Underground Space Technology
Tunnelling and Underground Space Technology 工程技术-工程:土木
CiteScore
11.90
自引率
18.80%
发文量
454
审稿时长
10.8 months
期刊介绍: Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.
期刊最新文献
Experimental study on sealing effect of cement–sodium silicate slurry in rock fracture with flowing seawater Theory and field tests of innovative cut blasting method for rock roadway excavation Asymmetric deformation and failure behavior of roadway subjected to different principal stress based on biaxial tests Scalar- and vector-valued seismic fragility assessment of segmental shield tunnel lining in liquefiable soil deposits Experimental and numerical study on the waterproof performances of the sealing gaskets under coupled compression-shear stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1