{"title":"N = 50 同位素在 πg9/2 壳中的反常资历断裂的 Ab initio 计算","authors":"Q. Yuan , B.S. Hu","doi":"10.1016/j.physletb.2024.139018","DOIUrl":null,"url":null,"abstract":"<div><p>We performed <em>ab initio</em> valence-space in-medium similarity renormalization group (VS-IMSRG) calculations based on chiral two-nucleon and three-nucleon interactions to investigate the anomalous seniority breaking in the neutron number <span><math><mi>N</mi><mo>=</mo><mn>50</mn></math></span> isotones: <sup>92</sup>Mo, <sup>94</sup>Ru, <sup>96</sup>Pd, and <sup>98</sup>Cd. Our calculations well reproduced the measured low-lying spectra and electromagnetic <em>E</em>2 transitions in these nuclei, supporting partial seniority conservation in the first <span><math><mi>π</mi><msub><mrow><mi>g</mi></mrow><mrow><mn>9</mn><mo>/</mo><mn>2</mn></mrow></msub></math></span> shell. Recent experiments have revealed that, compared to the symmetric patterns predicted under the conserved seniority symmetry, the <span><math><msubsup><mrow><mn>4</mn></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>→</mo><msubsup><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> <em>E</em>2 transition strength in <sup>94</sup>Ru is significantly enhanced and that in <sup>96</sup>Pd is suppressed. In contrast, the <span><math><msubsup><mrow><mn>6</mn></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>→</mo><msubsup><mrow><mn>4</mn></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mn>8</mn></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>→</mo><msubsup><mrow><mn>6</mn></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> transitions exhibit the opposite trend. We found that this anomalous asymmetry is sensitive to subtle seniority breaking effects, providing a stringent test for state-of-the-art nucleon-nucleon interactions and nuclear models. We analyzed the anomalous asymmetry using VS-IMSRG calculations across various valence spaces. Our <em>ab initio</em> results suggest that core excitations of both proton and neutron across the <span><math><mi>Z</mi><mo>=</mo><mn>50</mn></math></span> shell are ascribed to the observed anomalous seniority breaking in the <span><math><mi>N</mi><mo>=</mo><mn>50</mn></math></span> isotones.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0370269324005768/pdfft?md5=f18486daee7ff232b2e8b789e58a88eb&pid=1-s2.0-S0370269324005768-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Ab initio calculations of anomalous seniority breaking in the πg9/2 shell for the N = 50 isotones\",\"authors\":\"Q. Yuan , B.S. Hu\",\"doi\":\"10.1016/j.physletb.2024.139018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We performed <em>ab initio</em> valence-space in-medium similarity renormalization group (VS-IMSRG) calculations based on chiral two-nucleon and three-nucleon interactions to investigate the anomalous seniority breaking in the neutron number <span><math><mi>N</mi><mo>=</mo><mn>50</mn></math></span> isotones: <sup>92</sup>Mo, <sup>94</sup>Ru, <sup>96</sup>Pd, and <sup>98</sup>Cd. Our calculations well reproduced the measured low-lying spectra and electromagnetic <em>E</em>2 transitions in these nuclei, supporting partial seniority conservation in the first <span><math><mi>π</mi><msub><mrow><mi>g</mi></mrow><mrow><mn>9</mn><mo>/</mo><mn>2</mn></mrow></msub></math></span> shell. Recent experiments have revealed that, compared to the symmetric patterns predicted under the conserved seniority symmetry, the <span><math><msubsup><mrow><mn>4</mn></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>→</mo><msubsup><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> <em>E</em>2 transition strength in <sup>94</sup>Ru is significantly enhanced and that in <sup>96</sup>Pd is suppressed. In contrast, the <span><math><msubsup><mrow><mn>6</mn></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>→</mo><msubsup><mrow><mn>4</mn></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mn>8</mn></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>→</mo><msubsup><mrow><mn>6</mn></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> transitions exhibit the opposite trend. We found that this anomalous asymmetry is sensitive to subtle seniority breaking effects, providing a stringent test for state-of-the-art nucleon-nucleon interactions and nuclear models. We analyzed the anomalous asymmetry using VS-IMSRG calculations across various valence spaces. Our <em>ab initio</em> results suggest that core excitations of both proton and neutron across the <span><math><mi>Z</mi><mo>=</mo><mn>50</mn></math></span> shell are ascribed to the observed anomalous seniority breaking in the <span><math><mi>N</mi><mo>=</mo><mn>50</mn></math></span> isotones.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0370269324005768/pdfft?md5=f18486daee7ff232b2e8b789e58a88eb&pid=1-s2.0-S0370269324005768-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0370269324005768\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269324005768","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Ab initio calculations of anomalous seniority breaking in the πg9/2 shell for the N = 50 isotones
We performed ab initio valence-space in-medium similarity renormalization group (VS-IMSRG) calculations based on chiral two-nucleon and three-nucleon interactions to investigate the anomalous seniority breaking in the neutron number isotones: 92Mo, 94Ru, 96Pd, and 98Cd. Our calculations well reproduced the measured low-lying spectra and electromagnetic E2 transitions in these nuclei, supporting partial seniority conservation in the first shell. Recent experiments have revealed that, compared to the symmetric patterns predicted under the conserved seniority symmetry, the E2 transition strength in 94Ru is significantly enhanced and that in 96Pd is suppressed. In contrast, the and transitions exhibit the opposite trend. We found that this anomalous asymmetry is sensitive to subtle seniority breaking effects, providing a stringent test for state-of-the-art nucleon-nucleon interactions and nuclear models. We analyzed the anomalous asymmetry using VS-IMSRG calculations across various valence spaces. Our ab initio results suggest that core excitations of both proton and neutron across the shell are ascribed to the observed anomalous seniority breaking in the isotones.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.