1 型糖尿病诱发的探索障碍与运动活动有关,而不是与动机降低有关

IF 2.9 3区 医学 Q2 NEUROSCIENCES Neuroscience Pub Date : 2024-09-16 DOI:10.1016/j.neuroscience.2024.09.030
Thiago Amorim de Souza Lima, Martina Raissa Ribeiro, Malcon Carneiro de Brito, Elisa Mitiko Kawamoto
{"title":"1 型糖尿病诱发的探索障碍与运动活动有关,而不是与动机降低有关","authors":"Thiago Amorim de Souza Lima,&nbsp;Martina Raissa Ribeiro,&nbsp;Malcon Carneiro de Brito,&nbsp;Elisa Mitiko Kawamoto","doi":"10.1016/j.neuroscience.2024.09.030","DOIUrl":null,"url":null,"abstract":"<div><p>Type 1 diabetes mellitus (T1D) is associated with cognitive impairments in humans. A well-established animal model of T1D is induced through the administration of streptozotocin (STZ), a glucose analog that induces pancreatic β-cell death, resulting in hyperglycemia and cognitive impairment linked to neuroinflammation and oxidative stress. Tumor necrosis factor (TNF)-α, a key inflammatory mediator, is elevated in the central nervous system (CNS) of diabetic animals. In this study, we utilized TNFR1 knockout mice to investigate the role of TNFR1 signaling in short-term T1D-related cognitive impairment. Our findings showed that diabetic animals did not develop cognitive damage within the first 2 weeks of T1D but exhibited reduced exploration in all behavioral tests. Our findings suggest that this reduction in exploration was attributable to motor impairment, as there was no reduction in motivated novelty-seeking behavior. Additionally, deletion of TNFR1 signaling attenuated gait speed impairment in diabetic mice, but did not affect other motor-related or exploratory behaviors.</p></div>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impaired exploration induced by type 1 diabetes is related to locomotor activity rather than a reduction in motivation\",\"authors\":\"Thiago Amorim de Souza Lima,&nbsp;Martina Raissa Ribeiro,&nbsp;Malcon Carneiro de Brito,&nbsp;Elisa Mitiko Kawamoto\",\"doi\":\"10.1016/j.neuroscience.2024.09.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Type 1 diabetes mellitus (T1D) is associated with cognitive impairments in humans. A well-established animal model of T1D is induced through the administration of streptozotocin (STZ), a glucose analog that induces pancreatic β-cell death, resulting in hyperglycemia and cognitive impairment linked to neuroinflammation and oxidative stress. Tumor necrosis factor (TNF)-α, a key inflammatory mediator, is elevated in the central nervous system (CNS) of diabetic animals. In this study, we utilized TNFR1 knockout mice to investigate the role of TNFR1 signaling in short-term T1D-related cognitive impairment. Our findings showed that diabetic animals did not develop cognitive damage within the first 2 weeks of T1D but exhibited reduced exploration in all behavioral tests. Our findings suggest that this reduction in exploration was attributable to motor impairment, as there was no reduction in motivated novelty-seeking behavior. Additionally, deletion of TNFR1 signaling attenuated gait speed impairment in diabetic mice, but did not affect other motor-related or exploratory behaviors.</p></div>\",\"PeriodicalId\":19142,\"journal\":{\"name\":\"Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306452224004822\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306452224004822","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

1 型糖尿病(T1D)与人类的认知障碍有关。一种行之有效的 T1D 动物模型是通过注射链脲佐菌素(STZ)诱导的,STZ 是一种葡萄糖类似物,可诱导胰腺 β 细胞死亡,导致高血糖和认知障碍,这与神经炎症和氧化应激有关。肿瘤坏死因子(TNF)-α是一种关键的炎症介质,在糖尿病动物的中枢神经系统(CNS)中升高。在本研究中,我们利用 TNFR1 基因敲除小鼠来研究 TNFR1 信号在与 T1D 相关的短期认知障碍中的作用。我们的研究结果表明,糖尿病动物在患 T1D 的头两周内并未出现认知损害,但在所有行为测试中都表现出探索能力下降。我们的研究结果表明,这种探索行为的减少可归因于运动障碍,因为动机性的寻求新奇行为并没有减少。此外,删除 TNFR1 信号可减轻糖尿病小鼠的步速障碍,但不会影响其他与运动相关的行为或探索行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impaired exploration induced by type 1 diabetes is related to locomotor activity rather than a reduction in motivation

Type 1 diabetes mellitus (T1D) is associated with cognitive impairments in humans. A well-established animal model of T1D is induced through the administration of streptozotocin (STZ), a glucose analog that induces pancreatic β-cell death, resulting in hyperglycemia and cognitive impairment linked to neuroinflammation and oxidative stress. Tumor necrosis factor (TNF)-α, a key inflammatory mediator, is elevated in the central nervous system (CNS) of diabetic animals. In this study, we utilized TNFR1 knockout mice to investigate the role of TNFR1 signaling in short-term T1D-related cognitive impairment. Our findings showed that diabetic animals did not develop cognitive damage within the first 2 weeks of T1D but exhibited reduced exploration in all behavioral tests. Our findings suggest that this reduction in exploration was attributable to motor impairment, as there was no reduction in motivated novelty-seeking behavior. Additionally, deletion of TNFR1 signaling attenuated gait speed impairment in diabetic mice, but did not affect other motor-related or exploratory behaviors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience
Neuroscience 医学-神经科学
CiteScore
6.20
自引率
0.00%
发文量
394
审稿时长
52 days
期刊介绍: Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.
期刊最新文献
Thalamocortical dysrhythmia and reward deficiency syndrome as uncertainty disorders. Editorial Board Assessing visual motor performance in autistic children based on Kinect and fNIRS: A case study. Unveiling the veil of adipokines: A meta-analysis and systematic review in amyotrophic lateral sclerosis. Fecal microbiota transplantation alleviates neuronal Apoptosis, necroptosis and M1 polarization of microglia after ischemic stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1