利用系统识别优化风电场功率

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-09-12 DOI:10.1016/j.compchemeng.2024.108877
Yun Zhu , Yucai Zhu , Chao Yang
{"title":"利用系统识别优化风电场功率","authors":"Yun Zhu ,&nbsp;Yucai Zhu ,&nbsp;Chao Yang","doi":"10.1016/j.compchemeng.2024.108877","DOIUrl":null,"url":null,"abstract":"<div><p>The wake effect reduces the total power production of wind farms. This paper presents a method for wind farm power optimization through wake effect reduction. The proposed method optimizes the yaw angle offsets and de-rating settings of all turbines to maximize total power generation. The optimization approach is gradient-based, with gradients at each iteration obtained through system identification using field test data, eliminating the need for physical models. In system identification, test signal design, model estimation and model validation problems are solved in a systematic manner; in the gradient-based optimization, in order to achieve fast convergence, methods for initial value and initial step-size determination, variable step-size iteration and iteration termination are developed. The method is verified using the FLORIS wind farm model developed by National Renewable Energy Laboratory (NREL), USA. The studied wind farm consists of 80 wind turbines configured similarly to the Horns Rev I offshore wind farm in Denmark. The result of the developed optimization method is highly consistent with those obtained using FLORIS's built-in optimization tool.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"192 ","pages":"Article 108877"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098135424002953/pdfft?md5=b52657f2a6fdc592dabd38ad43caef73&pid=1-s2.0-S0098135424002953-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Wind farm power optimization using system identification\",\"authors\":\"Yun Zhu ,&nbsp;Yucai Zhu ,&nbsp;Chao Yang\",\"doi\":\"10.1016/j.compchemeng.2024.108877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The wake effect reduces the total power production of wind farms. This paper presents a method for wind farm power optimization through wake effect reduction. The proposed method optimizes the yaw angle offsets and de-rating settings of all turbines to maximize total power generation. The optimization approach is gradient-based, with gradients at each iteration obtained through system identification using field test data, eliminating the need for physical models. In system identification, test signal design, model estimation and model validation problems are solved in a systematic manner; in the gradient-based optimization, in order to achieve fast convergence, methods for initial value and initial step-size determination, variable step-size iteration and iteration termination are developed. The method is verified using the FLORIS wind farm model developed by National Renewable Energy Laboratory (NREL), USA. The studied wind farm consists of 80 wind turbines configured similarly to the Horns Rev I offshore wind farm in Denmark. The result of the developed optimization method is highly consistent with those obtained using FLORIS's built-in optimization tool.</p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"192 \",\"pages\":\"Article 108877\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0098135424002953/pdfft?md5=b52657f2a6fdc592dabd38ad43caef73&pid=1-s2.0-S0098135424002953-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424002953\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424002953","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

尾流效应会降低风电场的总发电量。本文提出了一种通过减少尾流效应优化风电场功率的方法。所提出的方法优化了所有风机的偏航角偏移和去分级设置,使总发电量最大化。该优化方法基于梯度,每次迭代的梯度都是通过使用现场测试数据进行系统识别获得的,无需物理模型。在系统识别中,系统地解决了测试信号设计、模型估计和模型验证问题;在基于梯度的优化中,为了实现快速收敛,开发了初值和初始步长确定、可变步长迭代和迭代终止方法。该方法使用美国国家可再生能源实验室(NREL)开发的 FLORIS 风场模型进行了验证。所研究的风电场由 80 台风力涡轮机组成,其配置与丹麦 Horns Rev I 海上风电场类似。所开发优化方法的结果与使用 FLORIS 内置优化工具获得的结果高度一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wind farm power optimization using system identification

The wake effect reduces the total power production of wind farms. This paper presents a method for wind farm power optimization through wake effect reduction. The proposed method optimizes the yaw angle offsets and de-rating settings of all turbines to maximize total power generation. The optimization approach is gradient-based, with gradients at each iteration obtained through system identification using field test data, eliminating the need for physical models. In system identification, test signal design, model estimation and model validation problems are solved in a systematic manner; in the gradient-based optimization, in order to achieve fast convergence, methods for initial value and initial step-size determination, variable step-size iteration and iteration termination are developed. The method is verified using the FLORIS wind farm model developed by National Renewable Energy Laboratory (NREL), USA. The studied wind farm consists of 80 wind turbines configured similarly to the Horns Rev I offshore wind farm in Denmark. The result of the developed optimization method is highly consistent with those obtained using FLORIS's built-in optimization tool.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
The bullwhip effect, market competition and standard deviation ratio in two parallel supply chains CADET-Julia: Efficient and versatile, open-source simulator for batch chromatography in Julia Computer aided formulation design based on molecular dynamics simulation: Detergents with fragrance Model-based real-time optimization in continuous pharmaceutical manufacturing Risk-averse supply chain management via robust reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1