Xu Xu , Yaxin Zhu , Yuting Niu , Yufei Chen , Siyang Fan , Dingkun Lu , Ruixia Xu , Xiaohan Fan
{"title":"细胞凋亡是胸主动脉瘤或夹层中一个突出的细胞死亡特征","authors":"Xu Xu , Yaxin Zhu , Yuting Niu , Yufei Chen , Siyang Fan , Dingkun Lu , Ruixia Xu , Xiaohan Fan","doi":"10.1016/j.yexcr.2024.114247","DOIUrl":null,"url":null,"abstract":"<div><p>Thoracic aortic aneurysm and dissection (TAAD) is a devastating macrovascular disease, and its pathogenic mechanisms have not been well clarified. This study aimed to investigate the role of PANoptosis, which is newly defined programmed cell death (PCD) and characterized by pyroptosis, apoptosis, and necroptosis, in the pathogenesis of TAAD. We found that the expression of initiator factor Z-DNA binding protein 1 (ZBP1) and PANoptosis-related genes were upregulated in the β-aminopropionitrile (BAPN) + Angiotensin II (Ang II)-induced TAAD mice. Ang II stimuli enhanced the expression of ZBP1, promoted the generation of bioactive GSDMD (Gasdermin D) fragments, the cleavage of Caspase 3, and increased the phosphorylation of mixed lineage kinase domain-like pseudokinase (MLKL) in human aortic vascular smooth muscle cells (HASMCs), indicating the activation of hallmarks for PANoptosis. Moreover, ZBP1-mediated PANoptosis occurs in the aortic tissues of TAAD patients. These results highlight the significant role of PANoptosis in TAAD pathogenesis, suggesting ZBP1 and other PANoptosis-related genes as potential therapeutic targets for this condition.</p></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"442 2","pages":"Article 114247"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PANoptosis is a prominent cell death feature in thoracic aortic aneurysm or dissection\",\"authors\":\"Xu Xu , Yaxin Zhu , Yuting Niu , Yufei Chen , Siyang Fan , Dingkun Lu , Ruixia Xu , Xiaohan Fan\",\"doi\":\"10.1016/j.yexcr.2024.114247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thoracic aortic aneurysm and dissection (TAAD) is a devastating macrovascular disease, and its pathogenic mechanisms have not been well clarified. This study aimed to investigate the role of PANoptosis, which is newly defined programmed cell death (PCD) and characterized by pyroptosis, apoptosis, and necroptosis, in the pathogenesis of TAAD. We found that the expression of initiator factor Z-DNA binding protein 1 (ZBP1) and PANoptosis-related genes were upregulated in the β-aminopropionitrile (BAPN) + Angiotensin II (Ang II)-induced TAAD mice. Ang II stimuli enhanced the expression of ZBP1, promoted the generation of bioactive GSDMD (Gasdermin D) fragments, the cleavage of Caspase 3, and increased the phosphorylation of mixed lineage kinase domain-like pseudokinase (MLKL) in human aortic vascular smooth muscle cells (HASMCs), indicating the activation of hallmarks for PANoptosis. Moreover, ZBP1-mediated PANoptosis occurs in the aortic tissues of TAAD patients. These results highlight the significant role of PANoptosis in TAAD pathogenesis, suggesting ZBP1 and other PANoptosis-related genes as potential therapeutic targets for this condition.</p></div>\",\"PeriodicalId\":12227,\"journal\":{\"name\":\"Experimental cell research\",\"volume\":\"442 2\",\"pages\":\"Article 114247\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014482724003380\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482724003380","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
PANoptosis is a prominent cell death feature in thoracic aortic aneurysm or dissection
Thoracic aortic aneurysm and dissection (TAAD) is a devastating macrovascular disease, and its pathogenic mechanisms have not been well clarified. This study aimed to investigate the role of PANoptosis, which is newly defined programmed cell death (PCD) and characterized by pyroptosis, apoptosis, and necroptosis, in the pathogenesis of TAAD. We found that the expression of initiator factor Z-DNA binding protein 1 (ZBP1) and PANoptosis-related genes were upregulated in the β-aminopropionitrile (BAPN) + Angiotensin II (Ang II)-induced TAAD mice. Ang II stimuli enhanced the expression of ZBP1, promoted the generation of bioactive GSDMD (Gasdermin D) fragments, the cleavage of Caspase 3, and increased the phosphorylation of mixed lineage kinase domain-like pseudokinase (MLKL) in human aortic vascular smooth muscle cells (HASMCs), indicating the activation of hallmarks for PANoptosis. Moreover, ZBP1-mediated PANoptosis occurs in the aortic tissues of TAAD patients. These results highlight the significant role of PANoptosis in TAAD pathogenesis, suggesting ZBP1 and other PANoptosis-related genes as potential therapeutic targets for this condition.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.