Luca Michel, Lex Reiter, Antoine Sanner, Robert J. Flatt, David S. Kammer
{"title":"硅酸盐水泥在诱导期和加速期的静态结构形成","authors":"Luca Michel, Lex Reiter, Antoine Sanner, Robert J. Flatt, David S. Kammer","doi":"10.1016/j.cemconres.2024.107665","DOIUrl":null,"url":null,"abstract":"<div><p>Structural build-up in fresh cement paste at rest is characterized by time evolutions of storage modulus and yield stress, which both increase linearly in time during the induction period of hydration, followed by an exponential evolution after entering the acceleration period. Here, we investigate structural build-up by coupling calorimetry and oscillatory shear measurements of Portland Cement at different w/c ratios and in the absence of admixtures, capturing how the storage modulus evolves with changes in cumulative heat. This allows the decoupling of hydration kinetics from the mechanisms dictating build-up at rest. We obtain an exponential relation between stiffness and heat, with the same exponent in both the induction and acceleration periods. This suggests that, at least in the absence of admixtures, the same mechanism dictates build-up at rest in both periods. Since it is understood that C-S-H dictates build-up at rest in the acceleration period, we deduce that the same mechanism holds in the induction period.</p></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"186 ","pages":"Article 107665"},"PeriodicalIF":10.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0008884624002461/pdfft?md5=5a4ff3d6407ed974fdb39cfcc18a9cec&pid=1-s2.0-S0008884624002461-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Structural build-up at rest in the induction and acceleration periods of Portland Cement\",\"authors\":\"Luca Michel, Lex Reiter, Antoine Sanner, Robert J. Flatt, David S. Kammer\",\"doi\":\"10.1016/j.cemconres.2024.107665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Structural build-up in fresh cement paste at rest is characterized by time evolutions of storage modulus and yield stress, which both increase linearly in time during the induction period of hydration, followed by an exponential evolution after entering the acceleration period. Here, we investigate structural build-up by coupling calorimetry and oscillatory shear measurements of Portland Cement at different w/c ratios and in the absence of admixtures, capturing how the storage modulus evolves with changes in cumulative heat. This allows the decoupling of hydration kinetics from the mechanisms dictating build-up at rest. We obtain an exponential relation between stiffness and heat, with the same exponent in both the induction and acceleration periods. This suggests that, at least in the absence of admixtures, the same mechanism dictates build-up at rest in both periods. Since it is understood that C-S-H dictates build-up at rest in the acceleration period, we deduce that the same mechanism holds in the induction period.</p></div>\",\"PeriodicalId\":266,\"journal\":{\"name\":\"Cement and Concrete Research\",\"volume\":\"186 \",\"pages\":\"Article 107665\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0008884624002461/pdfft?md5=5a4ff3d6407ed974fdb39cfcc18a9cec&pid=1-s2.0-S0008884624002461-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008884624002461\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884624002461","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Structural build-up at rest in the induction and acceleration periods of Portland Cement
Structural build-up in fresh cement paste at rest is characterized by time evolutions of storage modulus and yield stress, which both increase linearly in time during the induction period of hydration, followed by an exponential evolution after entering the acceleration period. Here, we investigate structural build-up by coupling calorimetry and oscillatory shear measurements of Portland Cement at different w/c ratios and in the absence of admixtures, capturing how the storage modulus evolves with changes in cumulative heat. This allows the decoupling of hydration kinetics from the mechanisms dictating build-up at rest. We obtain an exponential relation between stiffness and heat, with the same exponent in both the induction and acceleration periods. This suggests that, at least in the absence of admixtures, the same mechanism dictates build-up at rest in both periods. Since it is understood that C-S-H dictates build-up at rest in the acceleration period, we deduce that the same mechanism holds in the induction period.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.