Oleg Kul , Alexey Vasiliev , Alexey Shaposhnik , Andrey Nikitin , Anna Dmitrieva , Alexandr Bolshakov , Zhifu Liu , Mingsheng Ma , Artem Mokrushin , Nikolay Simonenko , Elizaveta Simonenko
{"title":"用于 MOS 传感器的新型丝网印刷陶瓷 MEMS 微热板","authors":"Oleg Kul , Alexey Vasiliev , Alexey Shaposhnik , Andrey Nikitin , Anna Dmitrieva , Alexandr Bolshakov , Zhifu Liu , Mingsheng Ma , Artem Mokrushin , Nikolay Simonenko , Elizaveta Simonenko","doi":"10.1016/j.sna.2024.115907","DOIUrl":null,"url":null,"abstract":"<div><p>We developed a new approach to the fabrication of MEMS substrates for MOS gas sensors. This full screen-printing process is based on the application of sacrificial material, which is solid at the near-room temperature of printing and turns to powder after the firing of the elements of the sensor. Therefore, this sacrificial material can be removed from under the suspended elements of the MEMS structure in ultrasonic bath. The glass-ceramic MEMS is a cantilever structure equipped with a Pt-based microheater made of Pt resistive material with sheet resistance of about 4 Ohm/square fabricated using core-shell technology. It is located at the end edge of the cantilever and is isolated from the contacts to the sensing layer by glass-ceramic insulation. Screen-printing provides cheap fabrication, robustness and low power (∼120 mW@450°C) of the sensing element. The functionality of the microhotplate was checked using ZnO nanomaterial deposited by microextruder, it demonstrated high response and selectivity of ZnO material to NO<sub>2</sub> (response 41.6 at 200°C for 10 ppm).</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel screen-printed ceramic MEMS microhotplate for MOS sensors\",\"authors\":\"Oleg Kul , Alexey Vasiliev , Alexey Shaposhnik , Andrey Nikitin , Anna Dmitrieva , Alexandr Bolshakov , Zhifu Liu , Mingsheng Ma , Artem Mokrushin , Nikolay Simonenko , Elizaveta Simonenko\",\"doi\":\"10.1016/j.sna.2024.115907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We developed a new approach to the fabrication of MEMS substrates for MOS gas sensors. This full screen-printing process is based on the application of sacrificial material, which is solid at the near-room temperature of printing and turns to powder after the firing of the elements of the sensor. Therefore, this sacrificial material can be removed from under the suspended elements of the MEMS structure in ultrasonic bath. The glass-ceramic MEMS is a cantilever structure equipped with a Pt-based microheater made of Pt resistive material with sheet resistance of about 4 Ohm/square fabricated using core-shell technology. It is located at the end edge of the cantilever and is isolated from the contacts to the sensing layer by glass-ceramic insulation. Screen-printing provides cheap fabrication, robustness and low power (∼120 mW@450°C) of the sensing element. The functionality of the microhotplate was checked using ZnO nanomaterial deposited by microextruder, it demonstrated high response and selectivity of ZnO material to NO<sub>2</sub> (response 41.6 at 200°C for 10 ppm).</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924424724009014\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724009014","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Novel screen-printed ceramic MEMS microhotplate for MOS sensors
We developed a new approach to the fabrication of MEMS substrates for MOS gas sensors. This full screen-printing process is based on the application of sacrificial material, which is solid at the near-room temperature of printing and turns to powder after the firing of the elements of the sensor. Therefore, this sacrificial material can be removed from under the suspended elements of the MEMS structure in ultrasonic bath. The glass-ceramic MEMS is a cantilever structure equipped with a Pt-based microheater made of Pt resistive material with sheet resistance of about 4 Ohm/square fabricated using core-shell technology. It is located at the end edge of the cantilever and is isolated from the contacts to the sensing layer by glass-ceramic insulation. Screen-printing provides cheap fabrication, robustness and low power (∼120 mW@450°C) of the sensing element. The functionality of the microhotplate was checked using ZnO nanomaterial deposited by microextruder, it demonstrated high response and selectivity of ZnO material to NO2 (response 41.6 at 200°C for 10 ppm).
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.