知识图像分类数据集

IF 1 Q3 MULTIDISCIPLINARY SCIENCES Data in Brief Pub Date : 2024-09-05 DOI:10.1016/j.dib.2024.110893
Franck Anaël Mbiaya , Christel Vrain , Frédéric Ros , Thi-Bich-Hanh Dao , Yves Lucas
{"title":"知识图像分类数据集","authors":"Franck Anaël Mbiaya ,&nbsp;Christel Vrain ,&nbsp;Frédéric Ros ,&nbsp;Thi-Bich-Hanh Dao ,&nbsp;Yves Lucas","doi":"10.1016/j.dib.2024.110893","DOIUrl":null,"url":null,"abstract":"<div><p>Deep learning applied to raw data has demonstrated outstanding image classification performance, mainly when abundant data is available. However, performance significantly degrades when a substantial volume of data is unavailable. Furthermore, deep architectures struggle to achieve satisfactory performance levels when distinguishing between distinct classes, such as fine-grained image classification, is challenging. Utilizing a priori knowledge alongside raw data can enhance image classification in demanding scenarios. Nevertheless, only a limited number of image classification datasets given with a priori knowledge are currently available, thereby restricting research efforts in this field. This paper introduces innovative datasets for the classification problem that integrate a priori knowledge. These datasets are built from existing data typically employed for multilabel multiclass classification or object detection. Frequent closed itemset mining is used to create classes and their corresponding attributes (e.g. the presence of an object in an image) and then to extract a priori knowledge expressed by rules on these attributes. The algorithm for generating rules is described.</p></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352340924008564/pdfft?md5=8fd60e4e950130bfeaa3ba88b87152e9&pid=1-s2.0-S2352340924008564-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Dataset for image classification with knowledge\",\"authors\":\"Franck Anaël Mbiaya ,&nbsp;Christel Vrain ,&nbsp;Frédéric Ros ,&nbsp;Thi-Bich-Hanh Dao ,&nbsp;Yves Lucas\",\"doi\":\"10.1016/j.dib.2024.110893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deep learning applied to raw data has demonstrated outstanding image classification performance, mainly when abundant data is available. However, performance significantly degrades when a substantial volume of data is unavailable. Furthermore, deep architectures struggle to achieve satisfactory performance levels when distinguishing between distinct classes, such as fine-grained image classification, is challenging. Utilizing a priori knowledge alongside raw data can enhance image classification in demanding scenarios. Nevertheless, only a limited number of image classification datasets given with a priori knowledge are currently available, thereby restricting research efforts in this field. This paper introduces innovative datasets for the classification problem that integrate a priori knowledge. These datasets are built from existing data typically employed for multilabel multiclass classification or object detection. Frequent closed itemset mining is used to create classes and their corresponding attributes (e.g. the presence of an object in an image) and then to extract a priori knowledge expressed by rules on these attributes. The algorithm for generating rules is described.</p></div>\",\"PeriodicalId\":10973,\"journal\":{\"name\":\"Data in Brief\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352340924008564/pdfft?md5=8fd60e4e950130bfeaa3ba88b87152e9&pid=1-s2.0-S2352340924008564-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data in Brief\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352340924008564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340924008564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

应用于原始数据的深度学习已显示出出色的图像分类性能,主要是在有大量数据可用的情况下。然而,当大量数据不可用时,性能就会明显下降。此外,当区分不同类别(如细粒度图像分类)具有挑战性时,深度架构也很难达到令人满意的性能水平。在要求苛刻的情况下,利用先验知识和原始数据可以增强图像分类能力。然而,目前利用先验知识给出的图像分类数据集数量有限,从而限制了这一领域的研究工作。本文针对分类问题引入了集成先验知识的创新数据集。这些数据集由现有数据构建而成,通常用于多标签多类分类或物体检测。频繁封闭项集挖掘用于创建类别及其相应的属性(如图像中是否存在物体),然后通过这些属性的规则提取先验知识。本文介绍了生成规则的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dataset for image classification with knowledge

Deep learning applied to raw data has demonstrated outstanding image classification performance, mainly when abundant data is available. However, performance significantly degrades when a substantial volume of data is unavailable. Furthermore, deep architectures struggle to achieve satisfactory performance levels when distinguishing between distinct classes, such as fine-grained image classification, is challenging. Utilizing a priori knowledge alongside raw data can enhance image classification in demanding scenarios. Nevertheless, only a limited number of image classification datasets given with a priori knowledge are currently available, thereby restricting research efforts in this field. This paper introduces innovative datasets for the classification problem that integrate a priori knowledge. These datasets are built from existing data typically employed for multilabel multiclass classification or object detection. Frequent closed itemset mining is used to create classes and their corresponding attributes (e.g. the presence of an object in an image) and then to extract a priori knowledge expressed by rules on these attributes. The algorithm for generating rules is described.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
期刊最新文献
Dataset of dendrometer and environmental parameter measurements of two different species of the group of genera known as eucalypts in South Africa and Portugal Bulk mRNA-sequencing data of the estrogen and androgen responses in the human prostate cancer cell line VCaP A refined spirometry dataset for comparing segmented (piecewise) linear models to that of GAMLSS Shotgun metagenomics sequencing data of root microbial community of Huanglongbing-infected Citrus nobilis BEEHIVE: A dataset of Apis mellifera images to empower honeybee monitoring research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1