Franck Anaël Mbiaya , Christel Vrain , Frédéric Ros , Thi-Bich-Hanh Dao , Yves Lucas
{"title":"知识图像分类数据集","authors":"Franck Anaël Mbiaya , Christel Vrain , Frédéric Ros , Thi-Bich-Hanh Dao , Yves Lucas","doi":"10.1016/j.dib.2024.110893","DOIUrl":null,"url":null,"abstract":"<div><p>Deep learning applied to raw data has demonstrated outstanding image classification performance, mainly when abundant data is available. However, performance significantly degrades when a substantial volume of data is unavailable. Furthermore, deep architectures struggle to achieve satisfactory performance levels when distinguishing between distinct classes, such as fine-grained image classification, is challenging. Utilizing a priori knowledge alongside raw data can enhance image classification in demanding scenarios. Nevertheless, only a limited number of image classification datasets given with a priori knowledge are currently available, thereby restricting research efforts in this field. This paper introduces innovative datasets for the classification problem that integrate a priori knowledge. These datasets are built from existing data typically employed for multilabel multiclass classification or object detection. Frequent closed itemset mining is used to create classes and their corresponding attributes (e.g. the presence of an object in an image) and then to extract a priori knowledge expressed by rules on these attributes. The algorithm for generating rules is described.</p></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352340924008564/pdfft?md5=8fd60e4e950130bfeaa3ba88b87152e9&pid=1-s2.0-S2352340924008564-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Dataset for image classification with knowledge\",\"authors\":\"Franck Anaël Mbiaya , Christel Vrain , Frédéric Ros , Thi-Bich-Hanh Dao , Yves Lucas\",\"doi\":\"10.1016/j.dib.2024.110893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deep learning applied to raw data has demonstrated outstanding image classification performance, mainly when abundant data is available. However, performance significantly degrades when a substantial volume of data is unavailable. Furthermore, deep architectures struggle to achieve satisfactory performance levels when distinguishing between distinct classes, such as fine-grained image classification, is challenging. Utilizing a priori knowledge alongside raw data can enhance image classification in demanding scenarios. Nevertheless, only a limited number of image classification datasets given with a priori knowledge are currently available, thereby restricting research efforts in this field. This paper introduces innovative datasets for the classification problem that integrate a priori knowledge. These datasets are built from existing data typically employed for multilabel multiclass classification or object detection. Frequent closed itemset mining is used to create classes and their corresponding attributes (e.g. the presence of an object in an image) and then to extract a priori knowledge expressed by rules on these attributes. The algorithm for generating rules is described.</p></div>\",\"PeriodicalId\":10973,\"journal\":{\"name\":\"Data in Brief\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352340924008564/pdfft?md5=8fd60e4e950130bfeaa3ba88b87152e9&pid=1-s2.0-S2352340924008564-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data in Brief\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352340924008564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340924008564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Deep learning applied to raw data has demonstrated outstanding image classification performance, mainly when abundant data is available. However, performance significantly degrades when a substantial volume of data is unavailable. Furthermore, deep architectures struggle to achieve satisfactory performance levels when distinguishing between distinct classes, such as fine-grained image classification, is challenging. Utilizing a priori knowledge alongside raw data can enhance image classification in demanding scenarios. Nevertheless, only a limited number of image classification datasets given with a priori knowledge are currently available, thereby restricting research efforts in this field. This paper introduces innovative datasets for the classification problem that integrate a priori knowledge. These datasets are built from existing data typically employed for multilabel multiclass classification or object detection. Frequent closed itemset mining is used to create classes and their corresponding attributes (e.g. the presence of an object in an image) and then to extract a priori knowledge expressed by rules on these attributes. The algorithm for generating rules is described.
期刊介绍:
Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.