{"title":"以克劳利-马丁功能反应为特征的捕食者-猎物模型的双稳态性:恐惧、狩猎合作、额外食物和非线性收获的影响","authors":"Subarna Roy, Pankaj Kumar Tiwari","doi":"10.1016/j.matcom.2024.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on unraveling key factors influencing predator–prey interactions with Crowley–Martin functional response. Specifically, it explores the roles of additional food sources, harvesting practices, hunting cooperation, fear and its carry-over effects. We analyze equilibrium points and their stability properties through rigorous mathematical methods. Numerical illustrations showcase a diverse range of bifurcations including Hopf, saddle–node, and transcritical, providing a comprehensive understanding of the system’s dynamics. We find that the collaboration among predators during hunting induces instability in the system, leading to the emergence of population cycles from a stable state. Further, we place emphasis on investigating the impact of seasonal forcing by introducing time-varying parameters into our model. We reveal the emergence of periodic solutions, higher periodic solutions and chaotic dynamics due to the seasonal variations of the prey’s birth rate and the degree of hunting cooperation. We also emphasize the significance of incorporating different periodicity of seasonally forced parameters, leading to a more precise understanding of predator–prey dynamics.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bistability in a predator–prey model characterized by the Crowley–Martin functional response: Effects of fear, hunting cooperation, additional foods and nonlinear harvesting\",\"authors\":\"Subarna Roy, Pankaj Kumar Tiwari\",\"doi\":\"10.1016/j.matcom.2024.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study focuses on unraveling key factors influencing predator–prey interactions with Crowley–Martin functional response. Specifically, it explores the roles of additional food sources, harvesting practices, hunting cooperation, fear and its carry-over effects. We analyze equilibrium points and their stability properties through rigorous mathematical methods. Numerical illustrations showcase a diverse range of bifurcations including Hopf, saddle–node, and transcritical, providing a comprehensive understanding of the system’s dynamics. We find that the collaboration among predators during hunting induces instability in the system, leading to the emergence of population cycles from a stable state. Further, we place emphasis on investigating the impact of seasonal forcing by introducing time-varying parameters into our model. We reveal the emergence of periodic solutions, higher periodic solutions and chaotic dynamics due to the seasonal variations of the prey’s birth rate and the degree of hunting cooperation. We also emphasize the significance of incorporating different periodicity of seasonally forced parameters, leading to a more precise understanding of predator–prey dynamics.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424003471\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003471","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Bistability in a predator–prey model characterized by the Crowley–Martin functional response: Effects of fear, hunting cooperation, additional foods and nonlinear harvesting
This study focuses on unraveling key factors influencing predator–prey interactions with Crowley–Martin functional response. Specifically, it explores the roles of additional food sources, harvesting practices, hunting cooperation, fear and its carry-over effects. We analyze equilibrium points and their stability properties through rigorous mathematical methods. Numerical illustrations showcase a diverse range of bifurcations including Hopf, saddle–node, and transcritical, providing a comprehensive understanding of the system’s dynamics. We find that the collaboration among predators during hunting induces instability in the system, leading to the emergence of population cycles from a stable state. Further, we place emphasis on investigating the impact of seasonal forcing by introducing time-varying parameters into our model. We reveal the emergence of periodic solutions, higher periodic solutions and chaotic dynamics due to the seasonal variations of the prey’s birth rate and the degree of hunting cooperation. We also emphasize the significance of incorporating different periodicity of seasonally forced parameters, leading to a more precise understanding of predator–prey dynamics.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.