{"title":"从大脑活动中重建感知图像的新型 DRL 引导稀疏体素解码模型","authors":"Xu Yin , Zhengping Wu , Haixian Wang","doi":"10.1016/j.jneumeth.2024.110292","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Due to the sparse encoding character of the human visual cortex and the scarcity of paired training samples for {images, fMRIs}, voxel selection is an effective means of reconstructing perceived images from fMRI. However, the existing data-driven voxel selection methods have not achieved satisfactory results.</p></div><div><h3>New method</h3><p>Here, a novel deep reinforcement learning-guided sparse voxel (DRL-SV) decoding model is proposed to reconstruct perceived images from fMRI. We innovatively describe voxel selection as a Markov decision process (MDP), training agents to select voxels that are highly involved in specific visual encoding.</p></div><div><h3>Results</h3><p>Experimental results on two public datasets verify the effectiveness of the proposed DRL-SV, which can accurately select voxels highly involved in neural encoding, thereby improving the quality of visual image reconstruction.</p></div><div><h3>Comparison with existing methods</h3><p>We qualitatively and quantitatively compared our results with the state-of-the-art (SOTA) methods, getting better reconstruction results. We compared the proposed DRL-SV with traditional data-driven baseline methods, obtaining sparser voxel selection results, but better reconstruction performance.</p></div><div><h3>Conclusions</h3><p>DRL-SV can accurately select voxels involved in visual encoding on few-shot, compared to data-driven voxel selection methods. The proposed decoding model provides a new avenue to improving the image reconstruction quality of the primary visual cortex.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel DRL-guided sparse voxel decoding model for reconstructing perceived images from brain activity\",\"authors\":\"Xu Yin , Zhengping Wu , Haixian Wang\",\"doi\":\"10.1016/j.jneumeth.2024.110292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Due to the sparse encoding character of the human visual cortex and the scarcity of paired training samples for {images, fMRIs}, voxel selection is an effective means of reconstructing perceived images from fMRI. However, the existing data-driven voxel selection methods have not achieved satisfactory results.</p></div><div><h3>New method</h3><p>Here, a novel deep reinforcement learning-guided sparse voxel (DRL-SV) decoding model is proposed to reconstruct perceived images from fMRI. We innovatively describe voxel selection as a Markov decision process (MDP), training agents to select voxels that are highly involved in specific visual encoding.</p></div><div><h3>Results</h3><p>Experimental results on two public datasets verify the effectiveness of the proposed DRL-SV, which can accurately select voxels highly involved in neural encoding, thereby improving the quality of visual image reconstruction.</p></div><div><h3>Comparison with existing methods</h3><p>We qualitatively and quantitatively compared our results with the state-of-the-art (SOTA) methods, getting better reconstruction results. We compared the proposed DRL-SV with traditional data-driven baseline methods, obtaining sparser voxel selection results, but better reconstruction performance.</p></div><div><h3>Conclusions</h3><p>DRL-SV can accurately select voxels involved in visual encoding on few-shot, compared to data-driven voxel selection methods. The proposed decoding model provides a new avenue to improving the image reconstruction quality of the primary visual cortex.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165027024002371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027024002371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A novel DRL-guided sparse voxel decoding model for reconstructing perceived images from brain activity
Background
Due to the sparse encoding character of the human visual cortex and the scarcity of paired training samples for {images, fMRIs}, voxel selection is an effective means of reconstructing perceived images from fMRI. However, the existing data-driven voxel selection methods have not achieved satisfactory results.
New method
Here, a novel deep reinforcement learning-guided sparse voxel (DRL-SV) decoding model is proposed to reconstruct perceived images from fMRI. We innovatively describe voxel selection as a Markov decision process (MDP), training agents to select voxels that are highly involved in specific visual encoding.
Results
Experimental results on two public datasets verify the effectiveness of the proposed DRL-SV, which can accurately select voxels highly involved in neural encoding, thereby improving the quality of visual image reconstruction.
Comparison with existing methods
We qualitatively and quantitatively compared our results with the state-of-the-art (SOTA) methods, getting better reconstruction results. We compared the proposed DRL-SV with traditional data-driven baseline methods, obtaining sparser voxel selection results, but better reconstruction performance.
Conclusions
DRL-SV can accurately select voxels involved in visual encoding on few-shot, compared to data-driven voxel selection methods. The proposed decoding model provides a new avenue to improving the image reconstruction quality of the primary visual cortex.