{"title":"一种新的最小二乘法,产生与算子空域正交的近似值","authors":"Eunjung Lee, Youngmin Shin","doi":"10.1016/j.apnum.2024.09.015","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a novel least squares functional specifically formulated to solve linear partial differential equations with operators that have a nonempty null space. Our method involves projecting the solution onto the orthogonal complement of the operator's null space to overcome challenges encountered by conventional numerical methods when nonzero null components are present. We describe the theoretical framework of the proposed method and validate it through numerical examples that show improved accuracy and usability in cases where traditional methods are less effective due to significant null space components. Overall, this approach provides a practical and reliable solution for partial differential equations with substantial null space components.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"207 ","pages":"Pages 370-383"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel least squares approach generating approximations orthogonal to the null space of the operator\",\"authors\":\"Eunjung Lee, Youngmin Shin\",\"doi\":\"10.1016/j.apnum.2024.09.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a novel least squares functional specifically formulated to solve linear partial differential equations with operators that have a nonempty null space. Our method involves projecting the solution onto the orthogonal complement of the operator's null space to overcome challenges encountered by conventional numerical methods when nonzero null components are present. We describe the theoretical framework of the proposed method and validate it through numerical examples that show improved accuracy and usability in cases where traditional methods are less effective due to significant null space components. Overall, this approach provides a practical and reliable solution for partial differential equations with substantial null space components.</p></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"207 \",\"pages\":\"Pages 370-383\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002526\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002526","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A novel least squares approach generating approximations orthogonal to the null space of the operator
We introduce a novel least squares functional specifically formulated to solve linear partial differential equations with operators that have a nonempty null space. Our method involves projecting the solution onto the orthogonal complement of the operator's null space to overcome challenges encountered by conventional numerical methods when nonzero null components are present. We describe the theoretical framework of the proposed method and validate it through numerical examples that show improved accuracy and usability in cases where traditional methods are less effective due to significant null space components. Overall, this approach provides a practical and reliable solution for partial differential equations with substantial null space components.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.