考虑多种影响因素后水分扩散对橡胶改性沥青和集料界面性能的影响

IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Polymer Materials Pub Date : 2024-09-18 DOI:10.1016/j.conbuildmat.2024.138358
Siting Chen , Lei Lu , Ya Gao , Chaoen Yin , Md Sumon Prodhan , Xinxing Zhou , Xiaorui Zhang
{"title":"考虑多种影响因素后水分扩散对橡胶改性沥青和集料界面性能的影响","authors":"Siting Chen ,&nbsp;Lei Lu ,&nbsp;Ya Gao ,&nbsp;Chaoen Yin ,&nbsp;Md Sumon Prodhan ,&nbsp;Xinxing Zhou ,&nbsp;Xiaorui Zhang","doi":"10.1016/j.conbuildmat.2024.138358","DOIUrl":null,"url":null,"abstract":"<div><p>Moisture-induced degradation is an inherent phenomenon at the interface between rubber-modified asphalt and aggregate, moisture ingress through diffusion impairs the integrity of this interface. This study employed molecular simulation to assess the performance of the rubber-modified asphalt and aggregate interface, considering multiple influencing factors such as temperature and loading. Infrared spectroscopy served to validate the alterations in functional groups after moisture exposure. Quantitative metrics, including mean square displacement, interfacial adhesion energy, adsorption energy, radius of gyration, solubility parameter, and molecular orientation, were computed to pinpoint the moisture-induced degradation zones. The findings demonstrated that the maximum moisture diffusion rate subject to various influencing parameters occurred at 298 K and 3 atm, as well as 333 K and 3 atm. Temperature exerted a more profound influence on the rubber-modified asphalt-aggregate interface compared to loading. The strength of hydrogen bonding between moisture and rubber molecules surpassed Van der Waals forces and induction force. Infrared spectroscopy showed that the diffused moisture persisted within the interface.</p></div>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"449 ","pages":"Article 138358"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of moisture diffusion on the properties of rubber-modified asphalt and aggregate interface considering multiple influencing factors\",\"authors\":\"Siting Chen ,&nbsp;Lei Lu ,&nbsp;Ya Gao ,&nbsp;Chaoen Yin ,&nbsp;Md Sumon Prodhan ,&nbsp;Xinxing Zhou ,&nbsp;Xiaorui Zhang\",\"doi\":\"10.1016/j.conbuildmat.2024.138358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Moisture-induced degradation is an inherent phenomenon at the interface between rubber-modified asphalt and aggregate, moisture ingress through diffusion impairs the integrity of this interface. This study employed molecular simulation to assess the performance of the rubber-modified asphalt and aggregate interface, considering multiple influencing factors such as temperature and loading. Infrared spectroscopy served to validate the alterations in functional groups after moisture exposure. Quantitative metrics, including mean square displacement, interfacial adhesion energy, adsorption energy, radius of gyration, solubility parameter, and molecular orientation, were computed to pinpoint the moisture-induced degradation zones. The findings demonstrated that the maximum moisture diffusion rate subject to various influencing parameters occurred at 298 K and 3 atm, as well as 333 K and 3 atm. Temperature exerted a more profound influence on the rubber-modified asphalt-aggregate interface compared to loading. The strength of hydrogen bonding between moisture and rubber molecules surpassed Van der Waals forces and induction force. Infrared spectroscopy showed that the diffused moisture persisted within the interface.</p></div>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":\"449 \",\"pages\":\"Article 138358\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950061824035001\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061824035001","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

湿气引起的降解是橡胶改性沥青和集料界面的固有现象,湿气通过扩散侵入会损害该界面的完整性。本研究采用分子模拟来评估橡胶改性沥青和集料界面的性能,并考虑了温度和荷载等多种影响因素。红外光谱分析验证了功能基团在受潮后发生的变化。计算了包括均方位移、界面粘附能、吸附能、回转半径、溶解度参数和分子取向在内的定量指标,以确定由湿气引起的降解区。研究结果表明,在 298 K 和 3 atm 以及 333 K 和 3 atm 条件下,受各种影响参数的影响,湿气扩散速率最大。与负载相比,温度对橡胶改性沥青集料界面的影响更大。水分和橡胶分子之间的氢键强度超过了范德华力和感应力。红外光谱显示,扩散的水分在界面内持续存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of moisture diffusion on the properties of rubber-modified asphalt and aggregate interface considering multiple influencing factors

Moisture-induced degradation is an inherent phenomenon at the interface between rubber-modified asphalt and aggregate, moisture ingress through diffusion impairs the integrity of this interface. This study employed molecular simulation to assess the performance of the rubber-modified asphalt and aggregate interface, considering multiple influencing factors such as temperature and loading. Infrared spectroscopy served to validate the alterations in functional groups after moisture exposure. Quantitative metrics, including mean square displacement, interfacial adhesion energy, adsorption energy, radius of gyration, solubility parameter, and molecular orientation, were computed to pinpoint the moisture-induced degradation zones. The findings demonstrated that the maximum moisture diffusion rate subject to various influencing parameters occurred at 298 K and 3 atm, as well as 333 K and 3 atm. Temperature exerted a more profound influence on the rubber-modified asphalt-aggregate interface compared to loading. The strength of hydrogen bonding between moisture and rubber molecules surpassed Van der Waals forces and induction force. Infrared spectroscopy showed that the diffused moisture persisted within the interface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
期刊最新文献
Deformability of Heterogeneous Red Blood Cells in Aging and Related Pathologies. Arrayed CRISPRi library to suppress genes required for Schizosaccharomyces pombe viability. Postsynaptic BMP signaling regulates myonuclear properties in Drosophila larval muscles. Heterogeneity of late endosome/lysosomes shown by multiplexed DNA-PAINT imaging. Kinetochores grip microtubules with directionally asymmetric strength.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1