Xiaoqing Mi , Mengyu Li , Yaru Zhang, Le Qu, Aoyang Xu, Junxia Xie, Ning Song
{"title":"脑室内注射α-突触核蛋白预成纤维不会诱发C57BL/6小鼠的运动和嗅觉损伤","authors":"Xiaoqing Mi , Mengyu Li , Yaru Zhang, Le Qu, Aoyang Xu, Junxia Xie, Ning Song","doi":"10.1016/j.neuroscience.2024.09.014","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>Alpha-synuclein (αSyn) is believed to play a central role in the pathogenesis of Parkinson’s disease (PD). Cerebrospinal fluid (CSF) total αSyn were significantly lower in PD patients, whereas the aggregates were higher, and this phenomenon was further exacerbated with longer disease duration. However, whether CSF αSyn can be the cause and/or a consequence in PD is not fully elucidated.</p></div><div><h3>Method</h3><p>We administered 2 ng or 200 ng αSyn preformed fibrils (PFFs) by intracerebroventricular injection for consecutive 7 days in C57BL/6 mice. The olfactory function was assessed by the olfactory discrimination test and buried food-seeking test. The locomotor function was assessed by the rotarod test, pole test, open field test and CatWalk gait analysis. Phosphorylated αSyn at serine 129 was detected by the immunohistochemistry staining. Iron levels was determined by Perl’s-diaminobenzidine iron staining and synchrotron-based X-ray fluorescence.</p></div><div><h3>Results</h3><p>The mice did not exhibit any diffuse synucleinopathy in the brain for up to 30 weeks, although αSyn PFFs induced aggregation in SH-SY5Y cells and in the substantia nigra and striatum of mice with stereotactic injection. No impairment of motor behaviors or olfactory functions were observed, although there was a temporary motor enhancement at 1 week. We then demonstrated iron levels were comparable in certain brain regions, suggesting there was no iron deposition/redistribution occurred.</p></div><div><h3>Conclusion</h3><p>The intraventricular injection of αSyn PFFs does not induce synucleinopathy or behavioral symptoms. These findings have implications that CSF αSyn aggregates may not necessarily contribute to the onset or progression in PD.</p></div>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intracerebroventricular injection of α-synuclein preformed fibrils do not induce motor and olfactory impairment in C57BL/6 mice\",\"authors\":\"Xiaoqing Mi , Mengyu Li , Yaru Zhang, Le Qu, Aoyang Xu, Junxia Xie, Ning Song\",\"doi\":\"10.1016/j.neuroscience.2024.09.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><p>Alpha-synuclein (αSyn) is believed to play a central role in the pathogenesis of Parkinson’s disease (PD). Cerebrospinal fluid (CSF) total αSyn were significantly lower in PD patients, whereas the aggregates were higher, and this phenomenon was further exacerbated with longer disease duration. However, whether CSF αSyn can be the cause and/or a consequence in PD is not fully elucidated.</p></div><div><h3>Method</h3><p>We administered 2 ng or 200 ng αSyn preformed fibrils (PFFs) by intracerebroventricular injection for consecutive 7 days in C57BL/6 mice. The olfactory function was assessed by the olfactory discrimination test and buried food-seeking test. The locomotor function was assessed by the rotarod test, pole test, open field test and CatWalk gait analysis. Phosphorylated αSyn at serine 129 was detected by the immunohistochemistry staining. Iron levels was determined by Perl’s-diaminobenzidine iron staining and synchrotron-based X-ray fluorescence.</p></div><div><h3>Results</h3><p>The mice did not exhibit any diffuse synucleinopathy in the brain for up to 30 weeks, although αSyn PFFs induced aggregation in SH-SY5Y cells and in the substantia nigra and striatum of mice with stereotactic injection. No impairment of motor behaviors or olfactory functions were observed, although there was a temporary motor enhancement at 1 week. We then demonstrated iron levels were comparable in certain brain regions, suggesting there was no iron deposition/redistribution occurred.</p></div><div><h3>Conclusion</h3><p>The intraventricular injection of αSyn PFFs does not induce synucleinopathy or behavioral symptoms. These findings have implications that CSF αSyn aggregates may not necessarily contribute to the onset or progression in PD.</p></div>\",\"PeriodicalId\":19142,\"journal\":{\"name\":\"Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306452224004688\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306452224004688","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Intracerebroventricular injection of α-synuclein preformed fibrils do not induce motor and olfactory impairment in C57BL/6 mice
Introduction
Alpha-synuclein (αSyn) is believed to play a central role in the pathogenesis of Parkinson’s disease (PD). Cerebrospinal fluid (CSF) total αSyn were significantly lower in PD patients, whereas the aggregates were higher, and this phenomenon was further exacerbated with longer disease duration. However, whether CSF αSyn can be the cause and/or a consequence in PD is not fully elucidated.
Method
We administered 2 ng or 200 ng αSyn preformed fibrils (PFFs) by intracerebroventricular injection for consecutive 7 days in C57BL/6 mice. The olfactory function was assessed by the olfactory discrimination test and buried food-seeking test. The locomotor function was assessed by the rotarod test, pole test, open field test and CatWalk gait analysis. Phosphorylated αSyn at serine 129 was detected by the immunohistochemistry staining. Iron levels was determined by Perl’s-diaminobenzidine iron staining and synchrotron-based X-ray fluorescence.
Results
The mice did not exhibit any diffuse synucleinopathy in the brain for up to 30 weeks, although αSyn PFFs induced aggregation in SH-SY5Y cells and in the substantia nigra and striatum of mice with stereotactic injection. No impairment of motor behaviors or olfactory functions were observed, although there was a temporary motor enhancement at 1 week. We then demonstrated iron levels were comparable in certain brain regions, suggesting there was no iron deposition/redistribution occurred.
Conclusion
The intraventricular injection of αSyn PFFs does not induce synucleinopathy or behavioral symptoms. These findings have implications that CSF αSyn aggregates may not necessarily contribute to the onset or progression in PD.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.