{"title":"分析联合疗法的无进展生存期分布:基于模型的肿瘤转化预测方法研究","authors":"Marcus Baaz , Tim Cardilin , Mats Jirstrand","doi":"10.1016/j.ejps.2024.106901","DOIUrl":null,"url":null,"abstract":"<div><p>Progression-free survival (PFS) is an important clinical metric in oncology and is typically illustrated and evaluated using a survival function. The survival function is often estimated <em>post-hoc</em> using the Kaplan-Meier estimator but more sophisticated techniques, such as population modeling using the nonlinear mixed-effects framework, also exist and are used for predictions. However, depending on the choice of population model PFS will follow different distributions both quantitatively and qualitatively. Hence the choice of model will also affect the predictions of the survival curves.</p><p>In this paper, we analyze the distribution of PFS for a frequently used tumor growth inhibition model with and without drug-resistance and highlight the translational implications of this. Moreover, we explore and compare how the PFS distribution for combination therapy differs under the hypotheses of additive and independent-drug action.</p><p>Furthermore, we calibrate the model to preclinical data and use a previously calibrated clinical model to show that our analytical conclusions are applicable to real-world setting. Finally, we demonstrate that independent-drug action can effectively describe the tumor dynamics of patient-derived xenografts (PDXs) given certain drug combinations.</p></div>","PeriodicalId":12018,"journal":{"name":"European Journal of Pharmaceutical Sciences","volume":"203 ","pages":"Article 106901"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0928098724002136/pdfft?md5=d5301e240521681d3b97fb43fbaa5bb1&pid=1-s2.0-S0928098724002136-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Analyzing the distribution of progression-free survival for combination therapies: A study of model-based translational predictive methods in oncology\",\"authors\":\"Marcus Baaz , Tim Cardilin , Mats Jirstrand\",\"doi\":\"10.1016/j.ejps.2024.106901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Progression-free survival (PFS) is an important clinical metric in oncology and is typically illustrated and evaluated using a survival function. The survival function is often estimated <em>post-hoc</em> using the Kaplan-Meier estimator but more sophisticated techniques, such as population modeling using the nonlinear mixed-effects framework, also exist and are used for predictions. However, depending on the choice of population model PFS will follow different distributions both quantitatively and qualitatively. Hence the choice of model will also affect the predictions of the survival curves.</p><p>In this paper, we analyze the distribution of PFS for a frequently used tumor growth inhibition model with and without drug-resistance and highlight the translational implications of this. Moreover, we explore and compare how the PFS distribution for combination therapy differs under the hypotheses of additive and independent-drug action.</p><p>Furthermore, we calibrate the model to preclinical data and use a previously calibrated clinical model to show that our analytical conclusions are applicable to real-world setting. Finally, we demonstrate that independent-drug action can effectively describe the tumor dynamics of patient-derived xenografts (PDXs) given certain drug combinations.</p></div>\",\"PeriodicalId\":12018,\"journal\":{\"name\":\"European Journal of Pharmaceutical Sciences\",\"volume\":\"203 \",\"pages\":\"Article 106901\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0928098724002136/pdfft?md5=d5301e240521681d3b97fb43fbaa5bb1&pid=1-s2.0-S0928098724002136-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0928098724002136\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928098724002136","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Analyzing the distribution of progression-free survival for combination therapies: A study of model-based translational predictive methods in oncology
Progression-free survival (PFS) is an important clinical metric in oncology and is typically illustrated and evaluated using a survival function. The survival function is often estimated post-hoc using the Kaplan-Meier estimator but more sophisticated techniques, such as population modeling using the nonlinear mixed-effects framework, also exist and are used for predictions. However, depending on the choice of population model PFS will follow different distributions both quantitatively and qualitatively. Hence the choice of model will also affect the predictions of the survival curves.
In this paper, we analyze the distribution of PFS for a frequently used tumor growth inhibition model with and without drug-resistance and highlight the translational implications of this. Moreover, we explore and compare how the PFS distribution for combination therapy differs under the hypotheses of additive and independent-drug action.
Furthermore, we calibrate the model to preclinical data and use a previously calibrated clinical model to show that our analytical conclusions are applicable to real-world setting. Finally, we demonstrate that independent-drug action can effectively describe the tumor dynamics of patient-derived xenografts (PDXs) given certain drug combinations.
期刊介绍:
The journal publishes research articles, review articles and scientific commentaries on all aspects of the pharmaceutical sciences with emphasis on conceptual novelty and scientific quality. The Editors welcome articles in this multidisciplinary field, with a focus on topics relevant for drug discovery and development.
More specifically, the Journal publishes reports on medicinal chemistry, pharmacology, drug absorption and metabolism, pharmacokinetics and pharmacodynamics, pharmaceutical and biomedical analysis, drug delivery (including gene delivery), drug targeting, pharmaceutical technology, pharmaceutical biotechnology and clinical drug evaluation. The journal will typically not give priority to manuscripts focusing primarily on organic synthesis, natural products, adaptation of analytical approaches, or discussions pertaining to drug policy making.
Scientific commentaries and review articles are generally by invitation only or by consent of the Editors. Proceedings of scientific meetings may be published as special issues or supplements to the Journal.