4-苯基丁酸通过抑制 ERS 和重建小鼠线粒体融合-分裂平衡来抑制补骨脂素诱导的肝毒性

IF 4.8 3区 医学 Q1 PHARMACOLOGY & PHARMACY Toxicology Pub Date : 2024-09-17 DOI:10.1016/j.tox.2024.153954
{"title":"4-苯基丁酸通过抑制 ERS 和重建小鼠线粒体融合-分裂平衡来抑制补骨脂素诱导的肝毒性","authors":"","doi":"10.1016/j.tox.2024.153954","DOIUrl":null,"url":null,"abstract":"<div><p>Psoralen is a main active molecule of the traditional Chinese herb medicine <em>Fructus Psoraleae</em>. Our previous studies have shown that psoralen induced liver injury through the endoplasmic reticulum stress (ERS) signaling pathways. In this article, we studied whether the ERS inhibitor, 4-phenylbutyrate acid (4-PBA) could inhibit the liver toxicity caused by psoralen, and explored the underlying mechanisms. Mice were given the solvent, 20 mg/kg, 40 mg/kg, 80 mg/kg of psoralen, or 80 mg/kg of psoralen plus 4-PBA for 14 days. We found that 4-PBA significantly reduced the serum LDH and liver tissue MDA level, increased the activities of SOD and CAT, reduced liver weight and coefficient, repaired histopathological damage, and inhibited hepatocytes apoptosis induced by psoralen. RNA-seq transcriptomics found that except for the endoplasmic reticulum, the mitochondria was severely affected by psoralen. And genes involved in mitochondrial fusion, apoptosis, protein folding, and autophagy were found differently expressed in the psoralen group. Further studies found that 4-PBA inhibited the overexpression of GRP78 and CHOP, increased the Bcl-2/Bax ratio, and reduced the expression of Caspase-3. Moreover, 4-PBA reduced the overexpression of mitochondrial fission protein DRP1, increased the expression of fusion proteins Mfn-2 and OPA1, but has no inhibitory effects on autophagy proteins Atg5 or LC3A/B. In conclusion, 4-PBA inhibited ERS and reestablished mitochondrial fusion-fission balance, thereby blocking cell apoptosis, oxidative stress, and mitochondrial dysfunction, thus prevented against psoralen-induced hepatotoxicity.</p></div>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4-Phenylbutyric acid suppresses psoralen-induced hepatotoxicity by inhibiting ERS and reestablishing mitochondrial fusion-fission balance in mice\",\"authors\":\"\",\"doi\":\"10.1016/j.tox.2024.153954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Psoralen is a main active molecule of the traditional Chinese herb medicine <em>Fructus Psoraleae</em>. Our previous studies have shown that psoralen induced liver injury through the endoplasmic reticulum stress (ERS) signaling pathways. In this article, we studied whether the ERS inhibitor, 4-phenylbutyrate acid (4-PBA) could inhibit the liver toxicity caused by psoralen, and explored the underlying mechanisms. Mice were given the solvent, 20 mg/kg, 40 mg/kg, 80 mg/kg of psoralen, or 80 mg/kg of psoralen plus 4-PBA for 14 days. We found that 4-PBA significantly reduced the serum LDH and liver tissue MDA level, increased the activities of SOD and CAT, reduced liver weight and coefficient, repaired histopathological damage, and inhibited hepatocytes apoptosis induced by psoralen. RNA-seq transcriptomics found that except for the endoplasmic reticulum, the mitochondria was severely affected by psoralen. And genes involved in mitochondrial fusion, apoptosis, protein folding, and autophagy were found differently expressed in the psoralen group. Further studies found that 4-PBA inhibited the overexpression of GRP78 and CHOP, increased the Bcl-2/Bax ratio, and reduced the expression of Caspase-3. Moreover, 4-PBA reduced the overexpression of mitochondrial fission protein DRP1, increased the expression of fusion proteins Mfn-2 and OPA1, but has no inhibitory effects on autophagy proteins Atg5 or LC3A/B. In conclusion, 4-PBA inhibited ERS and reestablished mitochondrial fusion-fission balance, thereby blocking cell apoptosis, oxidative stress, and mitochondrial dysfunction, thus prevented against psoralen-induced hepatotoxicity.</p></div>\",\"PeriodicalId\":23159,\"journal\":{\"name\":\"Toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300483X2400235X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300483X2400235X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

补骨脂素是传统中草药补骨脂的主要活性分子。我们之前的研究表明,补骨脂素通过内质网应激(ERS)信号通路诱导肝损伤。本文研究了ERS抑制剂4-苯基丁酸(4-PBA)能否抑制补骨脂素引起的肝脏毒性,并探讨了其潜在机制。我们给小鼠服用了溶剂、20 毫克/千克、40 毫克/千克、80 毫克/千克补骨脂素或 80 毫克/千克补骨脂素加 4-PBA 14 天。我们发现,4-PBA 能明显降低补骨脂素诱导的血清 LDH 和肝组织 MDA 水平,提高 SOD 和 CAT 的活性,减轻肝脏重量和系数,修复组织病理损伤,抑制肝细胞凋亡。RNA-seq 转录组学发现,除内质网外,线粒体受到补骨脂素的严重影响。参与线粒体融合、凋亡、蛋白质折叠和自噬的基因在补骨脂素组中有不同的表达。进一步的研究发现,4-PBA 可抑制 GRP78 和 CHOP 的过度表达,提高 Bcl-2/Bax 比率,减少 Caspase-3 的表达。此外,4-PBA 还能降低线粒体裂变蛋白 DRP1 的过表达,增加融合蛋白 Mfn-2 和 OPA1 的表达,但对自噬蛋白 Atg5 和 LC3A/B 没有抑制作用。总之,4-PBA 可抑制 ERS 并重建线粒体融合-裂变平衡,从而阻止细胞凋亡、氧化应激和线粒体功能障碍,从而防止补骨脂素诱导的肝毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
4-Phenylbutyric acid suppresses psoralen-induced hepatotoxicity by inhibiting ERS and reestablishing mitochondrial fusion-fission balance in mice

Psoralen is a main active molecule of the traditional Chinese herb medicine Fructus Psoraleae. Our previous studies have shown that psoralen induced liver injury through the endoplasmic reticulum stress (ERS) signaling pathways. In this article, we studied whether the ERS inhibitor, 4-phenylbutyrate acid (4-PBA) could inhibit the liver toxicity caused by psoralen, and explored the underlying mechanisms. Mice were given the solvent, 20 mg/kg, 40 mg/kg, 80 mg/kg of psoralen, or 80 mg/kg of psoralen plus 4-PBA for 14 days. We found that 4-PBA significantly reduced the serum LDH and liver tissue MDA level, increased the activities of SOD and CAT, reduced liver weight and coefficient, repaired histopathological damage, and inhibited hepatocytes apoptosis induced by psoralen. RNA-seq transcriptomics found that except for the endoplasmic reticulum, the mitochondria was severely affected by psoralen. And genes involved in mitochondrial fusion, apoptosis, protein folding, and autophagy were found differently expressed in the psoralen group. Further studies found that 4-PBA inhibited the overexpression of GRP78 and CHOP, increased the Bcl-2/Bax ratio, and reduced the expression of Caspase-3. Moreover, 4-PBA reduced the overexpression of mitochondrial fission protein DRP1, increased the expression of fusion proteins Mfn-2 and OPA1, but has no inhibitory effects on autophagy proteins Atg5 or LC3A/B. In conclusion, 4-PBA inhibited ERS and reestablished mitochondrial fusion-fission balance, thereby blocking cell apoptosis, oxidative stress, and mitochondrial dysfunction, thus prevented against psoralen-induced hepatotoxicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxicology
Toxicology 医学-毒理学
CiteScore
7.80
自引率
4.40%
发文量
222
审稿时长
23 days
期刊介绍: Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.
期刊最新文献
Cadmium-induced lung injury disrupts immune cell homeostasis in the secondary lymphoid organs in mice Heavy metal contamination of the Nigerian environment from e-waste management: A systematic review of exposure pathway and attendant pathophysiological implications New insights into the toxicity of lanthanides with functional genomics Effects of 28-day nose-only inhalation of PCB52 (2,2′,5,5′-Tetrachlorobiphenyl) on the brain transcriptome Edible vegetables grown in the vicinity of electronic wastes: A study of potential health risks and DNA damage in consumers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1