Yi Chen, Yu-Xin Zheng, Yi-Ze Li, Zhen Jia, Yuan Yuan
{"title":"GDNF 通过激活 RET 通路以及调节下游效应物 PKMζ 和 Kalirin,促进大鼠在新生儿手术诱发学习和记忆损伤后认知功能的恢复","authors":"Yi Chen, Yu-Xin Zheng, Yi-Ze Li, Zhen Jia, Yuan Yuan","doi":"10.1016/j.brainresbull.2024.111078","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>The aim of this study is to elucidate the underlying mechanism through which glial cell line-derived neurotrophic factor (GDNF) improves cognitive deficits in adults resulting from neonatal surgical interventions.</p></div><div><h3>Methods</h3><p>Newborn Sprague–Dawley rats, regardless of gender, were randomly allocated into seven groups on postnatal day 7 as follows (<em>n</em>=15): (1) Control group (not subjected to anesthesia, surgery, or any pharmaceutical interventions); (2) GDNF group (received intracerebroventricular injection of GDNF); (3) Surgery group (underwent right carotid artery exposure under anesthesia with 3 % sevoflurane); (4) Surgery plus GDNF group; (5) Surgery plus GDNF and type II JAK inhibitor NVP-BBT594 (BBT594) group (administered intraperitoneal injection of BBT594); (6) BBT group; and (7) Surgery plus BBT group. Starting from postnatal day 33, all rats underwent Barnes maze and fear conditioning tests, followed by decapitation under sevoflurane anesthesia for subsequent analyses. The left hemibrains underwent Golgi staining, while the right hemibrains were used for hippocampal protein extraction to assess Protein kinase Mζ (PKMζ) and Kalirin expression through western blotting.</p></div><div><h3>Results</h3><p>GDNF demonstrated a mitigating effect on spatial learning and memory impairment, as well as context-related fear memory impairment, reductions in dendritic total lengths, and spinal density within the hippocampus induced by surgical intervention. Notably, all of these ameliorative effects of GDNF were reversed upon administration of the RET inhibitor BBT594. Additionally, GDNF alleviated the downregulation of protein expression of PKMζ and Kalirin in the hippocampus of rats subjected to surgery, subsequently reversed by BBT594.</p></div><div><h3>Conclusion</h3><p>The effective impact of GDNF on learning and memory impairment caused by surgical intervention appears to be mediated through the RET pathway. Moreover, GDNF may exert its influence by upregulating the expression of PKMζ and Kalirin, consequently enhancing the development of dendrites and dendritic spines.</p></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"217 ","pages":"Article 111078"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0361923024002120/pdfft?md5=3beff9a5217a66fb993188060c8fcb4c&pid=1-s2.0-S0361923024002120-main.pdf","citationCount":"0","resultStr":"{\"title\":\"GDNF facilitates cognitive function recovery following neonatal surgical-induced learning and memory impairment via activation of the RET pathway and modulation of downstream effectors PKMζ and Kalirin in rats\",\"authors\":\"Yi Chen, Yu-Xin Zheng, Yi-Ze Li, Zhen Jia, Yuan Yuan\",\"doi\":\"10.1016/j.brainresbull.2024.111078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>The aim of this study is to elucidate the underlying mechanism through which glial cell line-derived neurotrophic factor (GDNF) improves cognitive deficits in adults resulting from neonatal surgical interventions.</p></div><div><h3>Methods</h3><p>Newborn Sprague–Dawley rats, regardless of gender, were randomly allocated into seven groups on postnatal day 7 as follows (<em>n</em>=15): (1) Control group (not subjected to anesthesia, surgery, or any pharmaceutical interventions); (2) GDNF group (received intracerebroventricular injection of GDNF); (3) Surgery group (underwent right carotid artery exposure under anesthesia with 3 % sevoflurane); (4) Surgery plus GDNF group; (5) Surgery plus GDNF and type II JAK inhibitor NVP-BBT594 (BBT594) group (administered intraperitoneal injection of BBT594); (6) BBT group; and (7) Surgery plus BBT group. Starting from postnatal day 33, all rats underwent Barnes maze and fear conditioning tests, followed by decapitation under sevoflurane anesthesia for subsequent analyses. The left hemibrains underwent Golgi staining, while the right hemibrains were used for hippocampal protein extraction to assess Protein kinase Mζ (PKMζ) and Kalirin expression through western blotting.</p></div><div><h3>Results</h3><p>GDNF demonstrated a mitigating effect on spatial learning and memory impairment, as well as context-related fear memory impairment, reductions in dendritic total lengths, and spinal density within the hippocampus induced by surgical intervention. Notably, all of these ameliorative effects of GDNF were reversed upon administration of the RET inhibitor BBT594. Additionally, GDNF alleviated the downregulation of protein expression of PKMζ and Kalirin in the hippocampus of rats subjected to surgery, subsequently reversed by BBT594.</p></div><div><h3>Conclusion</h3><p>The effective impact of GDNF on learning and memory impairment caused by surgical intervention appears to be mediated through the RET pathway. Moreover, GDNF may exert its influence by upregulating the expression of PKMζ and Kalirin, consequently enhancing the development of dendrites and dendritic spines.</p></div>\",\"PeriodicalId\":9302,\"journal\":{\"name\":\"Brain Research Bulletin\",\"volume\":\"217 \",\"pages\":\"Article 111078\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0361923024002120/pdfft?md5=3beff9a5217a66fb993188060c8fcb4c&pid=1-s2.0-S0361923024002120-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Research Bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0361923024002120\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923024002120","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
GDNF facilitates cognitive function recovery following neonatal surgical-induced learning and memory impairment via activation of the RET pathway and modulation of downstream effectors PKMζ and Kalirin in rats
Objective
The aim of this study is to elucidate the underlying mechanism through which glial cell line-derived neurotrophic factor (GDNF) improves cognitive deficits in adults resulting from neonatal surgical interventions.
Methods
Newborn Sprague–Dawley rats, regardless of gender, were randomly allocated into seven groups on postnatal day 7 as follows (n=15): (1) Control group (not subjected to anesthesia, surgery, or any pharmaceutical interventions); (2) GDNF group (received intracerebroventricular injection of GDNF); (3) Surgery group (underwent right carotid artery exposure under anesthesia with 3 % sevoflurane); (4) Surgery plus GDNF group; (5) Surgery plus GDNF and type II JAK inhibitor NVP-BBT594 (BBT594) group (administered intraperitoneal injection of BBT594); (6) BBT group; and (7) Surgery plus BBT group. Starting from postnatal day 33, all rats underwent Barnes maze and fear conditioning tests, followed by decapitation under sevoflurane anesthesia for subsequent analyses. The left hemibrains underwent Golgi staining, while the right hemibrains were used for hippocampal protein extraction to assess Protein kinase Mζ (PKMζ) and Kalirin expression through western blotting.
Results
GDNF demonstrated a mitigating effect on spatial learning and memory impairment, as well as context-related fear memory impairment, reductions in dendritic total lengths, and spinal density within the hippocampus induced by surgical intervention. Notably, all of these ameliorative effects of GDNF were reversed upon administration of the RET inhibitor BBT594. Additionally, GDNF alleviated the downregulation of protein expression of PKMζ and Kalirin in the hippocampus of rats subjected to surgery, subsequently reversed by BBT594.
Conclusion
The effective impact of GDNF on learning and memory impairment caused by surgical intervention appears to be mediated through the RET pathway. Moreover, GDNF may exert its influence by upregulating the expression of PKMζ and Kalirin, consequently enhancing the development of dendrites and dendritic spines.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.