G2BFNN:广义大地基函数神经网络

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Networks Pub Date : 2024-09-11 DOI:10.1016/j.neunet.2024.106701
{"title":"G2BFNN:广义大地基函数神经网络","authors":"","doi":"10.1016/j.neunet.2024.106701","DOIUrl":null,"url":null,"abstract":"<div><p>Real-world data is typically distributed on low-dimensional manifolds embedded in high-dimensional Euclidean spaces. Accurately extracting spatial distribution features on general manifolds that reflect the intrinsic characteristics of data is crucial for effective feature representation. Therefore, we propose a generalized geodesic basis function neural network (G<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>BFNN) architecture. The generalized geodesic basis functions (G<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>BF) are defined based on generalized geodesic distances. The generalized geodesic distance metric (G<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>DM) is obtained by learning the manifold structure. To implement this architecture, a specific G<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>BFNN, named discriminative local preserving projection-based G<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>BFNN (DLPP-G<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>BFNN) is proposed. DLPP-G<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>BFNN mainly contains two modules, namely the manifold structure learning module (MSLM) and the network mapping module (NMM). In the MSLM module, a supervised adjacency graph matrix is constructed to constrain the learning of the manifold structure. This enables the learned features in the embedding subspace to maintain the manifold structure while enhancing the discriminability. The features and G<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>DM learned in the MSLM are fed into the NMM. Through the G<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>BF in the NMM, the spatial distribution features on manifold are obtained. Finally, the output of the network is obtained through the fully connected layer. Compared with the local response neural network based on Euclidean distance, the proposed network can reveal more essential spatial structure characteristics of the data. Meanwhile, the proposed G<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>BFNN is a generalized network architecture that can be combined with any manifold learning method, showcasing high scalability. The experimental results demonstrate that the proposed DLPP-G<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>BFNN outperforms existing methods by utilizing fewer kernels while achieving higher recognition performance.</p></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"G2BFNN: Generalized geodesic basis function neural network\",\"authors\":\"\",\"doi\":\"10.1016/j.neunet.2024.106701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Real-world data is typically distributed on low-dimensional manifolds embedded in high-dimensional Euclidean spaces. Accurately extracting spatial distribution features on general manifolds that reflect the intrinsic characteristics of data is crucial for effective feature representation. Therefore, we propose a generalized geodesic basis function neural network (G<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>BFNN) architecture. The generalized geodesic basis functions (G<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>BF) are defined based on generalized geodesic distances. The generalized geodesic distance metric (G<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>DM) is obtained by learning the manifold structure. To implement this architecture, a specific G<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>BFNN, named discriminative local preserving projection-based G<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>BFNN (DLPP-G<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>BFNN) is proposed. DLPP-G<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>BFNN mainly contains two modules, namely the manifold structure learning module (MSLM) and the network mapping module (NMM). In the MSLM module, a supervised adjacency graph matrix is constructed to constrain the learning of the manifold structure. This enables the learned features in the embedding subspace to maintain the manifold structure while enhancing the discriminability. The features and G<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>DM learned in the MSLM are fed into the NMM. Through the G<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>BF in the NMM, the spatial distribution features on manifold are obtained. Finally, the output of the network is obtained through the fully connected layer. Compared with the local response neural network based on Euclidean distance, the proposed network can reveal more essential spatial structure characteristics of the data. Meanwhile, the proposed G<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>BFNN is a generalized network architecture that can be combined with any manifold learning method, showcasing high scalability. The experimental results demonstrate that the proposed DLPP-G<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>BFNN outperforms existing methods by utilizing fewer kernels while achieving higher recognition performance.</p></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608024006257\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024006257","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

现实世界的数据通常分布在嵌入高维欧几里得空间的低维流形上。准确提取一般流形上反映数据内在特征的空间分布特征,对于有效的特征表示至关重要。因此,我们提出了广义大地基函数神经网络(G2BFNN)架构。广义大地基函数(G2BF)是基于广义大地测量距离定义的。广义大地测量距离度量(G2DM)是通过学习流形结构获得的。为实现这一架构,我们提出了一种特定的 G2BFN,名为基于判别局部保存投影的 G2BFN(DLPP-G2BFN)。DLPP-G2BFNN 主要包含两个模块,即流形结构学习模块(MSLM)和网络映射模块(NMM)。在 MSLM 模块中,构建了一个监督邻接图矩阵来约束流形结构的学习。这样,嵌入子空间中学习到的特征就能保持流形结构,同时提高可辨别性。在 MSLM 中学习到的特征和 G2DM 被输入到 NMM 中。通过 NMM 中的 G2BF,可以获得流形上的空间分布特征。最后,通过全连接层获得网络输出。与基于欧氏距离的局部响应神经网络相比,所提出的网络能揭示数据更本质的空间结构特征。同时,所提出的 G2BFNN 是一种通用的网络结构,可以与任何流形学习方法相结合,具有很高的可扩展性。实验结果表明,所提出的 DLPP-G2BFNN 利用更少的内核就能获得更高的识别性能,其性能优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
G2BFNN: Generalized geodesic basis function neural network

Real-world data is typically distributed on low-dimensional manifolds embedded in high-dimensional Euclidean spaces. Accurately extracting spatial distribution features on general manifolds that reflect the intrinsic characteristics of data is crucial for effective feature representation. Therefore, we propose a generalized geodesic basis function neural network (G2BFNN) architecture. The generalized geodesic basis functions (G2BF) are defined based on generalized geodesic distances. The generalized geodesic distance metric (G2DM) is obtained by learning the manifold structure. To implement this architecture, a specific G2BFNN, named discriminative local preserving projection-based G2BFNN (DLPP-G2BFNN) is proposed. DLPP-G2BFNN mainly contains two modules, namely the manifold structure learning module (MSLM) and the network mapping module (NMM). In the MSLM module, a supervised adjacency graph matrix is constructed to constrain the learning of the manifold structure. This enables the learned features in the embedding subspace to maintain the manifold structure while enhancing the discriminability. The features and G2DM learned in the MSLM are fed into the NMM. Through the G2BF in the NMM, the spatial distribution features on manifold are obtained. Finally, the output of the network is obtained through the fully connected layer. Compared with the local response neural network based on Euclidean distance, the proposed network can reveal more essential spatial structure characteristics of the data. Meanwhile, the proposed G2BFNN is a generalized network architecture that can be combined with any manifold learning method, showcasing high scalability. The experimental results demonstrate that the proposed DLPP-G2BFNN outperforms existing methods by utilizing fewer kernels while achieving higher recognition performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
期刊最新文献
Multi-focus image fusion with parameter adaptive dual channel dynamic threshold neural P systems. Joint computation offloading and resource allocation for end-edge collaboration in internet of vehicles via multi-agent reinforcement learning. An information-theoretic perspective of physical adversarial patches. Contrastive fine-grained domain adaptation network for EEG-based vigilance estimation. Decoupling visual and identity features for adversarial palm-vein image attack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1