Iman Vaezi , Francesco Parisio , Keita Yoshioka , Andres Alcolea , Peter Meier , Jesús Carrera , Sebastià Olivella , Víctor Vilarrasa
{"title":"利用连续体方法对骨折进行隐含的水力学表示","authors":"Iman Vaezi , Francesco Parisio , Keita Yoshioka , Andres Alcolea , Peter Meier , Jesús Carrera , Sebastià Olivella , Víctor Vilarrasa","doi":"10.1016/j.ijrmms.2024.105916","DOIUrl":null,"url":null,"abstract":"<div><p>Fractures control fluid flow, solute transport, and mechanical deformation in crystalline media. They can be modeled numerically either explicitly or implicitly via an equivalent continuum. The implicit framework implies lower computational cost and complexity. However, upscaling heterogeneous fracture properties for its implicit representation as an equivalent fracture layer remains an open question. In this study, we propose an approach, the Equivalent Fracture Layer (EFL), for the implicit representation of fractures surrounded by low-permeability rock matrix to accurately simulate hydromechanical coupled processes. The approach assimilates fractures as equivalent continua with a manageable scale (≫1 μm) that facilitates spatial discretization, even for large-scale models including multiple fractures. Simulation results demonstrate that a relatively thick equivalent continuum layer (in the order of cm) can represent a fracture (with aperture in the order of μm) and accurately reproduce the hydromechanical behavior (i.e., fluid flow and deformation/stress behavior). There is an upper bound restriction due to the Young's modulus because the equivalent fracture layer should have a lower Young's modulus than that of the surrounding matrix. To validate the approach, we model a hydraulic stimulation carried out at the Bedretto Underground Laboratory for Geosciences and Geoenergies in Switzerland by comparing numerical results against measured data. The method further improves the ability and simplicity of continuum methods to represent fractures in fractured media.</p></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"183 ","pages":"Article 105916"},"PeriodicalIF":7.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1365160924002818/pdfft?md5=00c92910d9fe2a0d4a9ea1ffe3a1ac90&pid=1-s2.0-S1365160924002818-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Implicit hydromechanical representation of fractures using a continuum approach\",\"authors\":\"Iman Vaezi , Francesco Parisio , Keita Yoshioka , Andres Alcolea , Peter Meier , Jesús Carrera , Sebastià Olivella , Víctor Vilarrasa\",\"doi\":\"10.1016/j.ijrmms.2024.105916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fractures control fluid flow, solute transport, and mechanical deformation in crystalline media. They can be modeled numerically either explicitly or implicitly via an equivalent continuum. The implicit framework implies lower computational cost and complexity. However, upscaling heterogeneous fracture properties for its implicit representation as an equivalent fracture layer remains an open question. In this study, we propose an approach, the Equivalent Fracture Layer (EFL), for the implicit representation of fractures surrounded by low-permeability rock matrix to accurately simulate hydromechanical coupled processes. The approach assimilates fractures as equivalent continua with a manageable scale (≫1 μm) that facilitates spatial discretization, even for large-scale models including multiple fractures. Simulation results demonstrate that a relatively thick equivalent continuum layer (in the order of cm) can represent a fracture (with aperture in the order of μm) and accurately reproduce the hydromechanical behavior (i.e., fluid flow and deformation/stress behavior). There is an upper bound restriction due to the Young's modulus because the equivalent fracture layer should have a lower Young's modulus than that of the surrounding matrix. To validate the approach, we model a hydraulic stimulation carried out at the Bedretto Underground Laboratory for Geosciences and Geoenergies in Switzerland by comparing numerical results against measured data. The method further improves the ability and simplicity of continuum methods to represent fractures in fractured media.</p></div>\",\"PeriodicalId\":54941,\"journal\":{\"name\":\"International Journal of Rock Mechanics and Mining Sciences\",\"volume\":\"183 \",\"pages\":\"Article 105916\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1365160924002818/pdfft?md5=00c92910d9fe2a0d4a9ea1ffe3a1ac90&pid=1-s2.0-S1365160924002818-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Rock Mechanics and Mining Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1365160924002818\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160924002818","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Implicit hydromechanical representation of fractures using a continuum approach
Fractures control fluid flow, solute transport, and mechanical deformation in crystalline media. They can be modeled numerically either explicitly or implicitly via an equivalent continuum. The implicit framework implies lower computational cost and complexity. However, upscaling heterogeneous fracture properties for its implicit representation as an equivalent fracture layer remains an open question. In this study, we propose an approach, the Equivalent Fracture Layer (EFL), for the implicit representation of fractures surrounded by low-permeability rock matrix to accurately simulate hydromechanical coupled processes. The approach assimilates fractures as equivalent continua with a manageable scale (≫1 μm) that facilitates spatial discretization, even for large-scale models including multiple fractures. Simulation results demonstrate that a relatively thick equivalent continuum layer (in the order of cm) can represent a fracture (with aperture in the order of μm) and accurately reproduce the hydromechanical behavior (i.e., fluid flow and deformation/stress behavior). There is an upper bound restriction due to the Young's modulus because the equivalent fracture layer should have a lower Young's modulus than that of the surrounding matrix. To validate the approach, we model a hydraulic stimulation carried out at the Bedretto Underground Laboratory for Geosciences and Geoenergies in Switzerland by comparing numerical results against measured data. The method further improves the ability and simplicity of continuum methods to represent fractures in fractured media.
期刊介绍:
The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.