{"title":"正常载荷下岩石节理的分形接触和表面凝聚:压敏薄膜测量的启示","authors":"","doi":"10.1016/j.ijrmms.2024.105908","DOIUrl":null,"url":null,"abstract":"<div><p>Direct measurement of the real contact area of rock joints under normal loading is crucial for comprehending the subsurface geological processes. However, measuring this phenomenon quantitatively at site-scale or laboratory-scale is challenging. Here, we investigate the evolution mechanism of the real contact area in rock joints by conducting closure tests on artificial and saw-cut sandstone joints under normal stresses up to 50 MPa. Geometrical shapes of contact patches are quantified by the pressure-sensitive film using the adaptive threshold method. An extensive range of contact stress within contact patches is innovatively measured by integrating the results from multi-type pressure-sensitive films. Experimental results demonstrate that the real contact area increases with the increasing normal stress hyperbolically. Such a nonlinear contact evolution behavior can be attributed to the coalescence of adjacent contact patches. The fractal dimension of composite surface governs the geometrical shapes of contact patches and the distribution of contact stress. The relationship between patch areas and bearing loads follows the Hertzian theory when the patches are small, while it gradually becomes linear with the increasing patch size. A power model with exponential cut-off is proposed to predict the size distribution of contact patches. This work can provide new insights for estimating the patch-dependent seismic nucleation length and slip stability of subsurface joints.</p></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractal contact and asperities coalescence of rock joints under normal loading: Insights from pressure-sensitive film measurement\",\"authors\":\"\",\"doi\":\"10.1016/j.ijrmms.2024.105908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Direct measurement of the real contact area of rock joints under normal loading is crucial for comprehending the subsurface geological processes. However, measuring this phenomenon quantitatively at site-scale or laboratory-scale is challenging. Here, we investigate the evolution mechanism of the real contact area in rock joints by conducting closure tests on artificial and saw-cut sandstone joints under normal stresses up to 50 MPa. Geometrical shapes of contact patches are quantified by the pressure-sensitive film using the adaptive threshold method. An extensive range of contact stress within contact patches is innovatively measured by integrating the results from multi-type pressure-sensitive films. Experimental results demonstrate that the real contact area increases with the increasing normal stress hyperbolically. Such a nonlinear contact evolution behavior can be attributed to the coalescence of adjacent contact patches. The fractal dimension of composite surface governs the geometrical shapes of contact patches and the distribution of contact stress. The relationship between patch areas and bearing loads follows the Hertzian theory when the patches are small, while it gradually becomes linear with the increasing patch size. A power model with exponential cut-off is proposed to predict the size distribution of contact patches. This work can provide new insights for estimating the patch-dependent seismic nucleation length and slip stability of subsurface joints.</p></div>\",\"PeriodicalId\":54941,\"journal\":{\"name\":\"International Journal of Rock Mechanics and Mining Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Rock Mechanics and Mining Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1365160924002739\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160924002739","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Fractal contact and asperities coalescence of rock joints under normal loading: Insights from pressure-sensitive film measurement
Direct measurement of the real contact area of rock joints under normal loading is crucial for comprehending the subsurface geological processes. However, measuring this phenomenon quantitatively at site-scale or laboratory-scale is challenging. Here, we investigate the evolution mechanism of the real contact area in rock joints by conducting closure tests on artificial and saw-cut sandstone joints under normal stresses up to 50 MPa. Geometrical shapes of contact patches are quantified by the pressure-sensitive film using the adaptive threshold method. An extensive range of contact stress within contact patches is innovatively measured by integrating the results from multi-type pressure-sensitive films. Experimental results demonstrate that the real contact area increases with the increasing normal stress hyperbolically. Such a nonlinear contact evolution behavior can be attributed to the coalescence of adjacent contact patches. The fractal dimension of composite surface governs the geometrical shapes of contact patches and the distribution of contact stress. The relationship between patch areas and bearing loads follows the Hertzian theory when the patches are small, while it gradually becomes linear with the increasing patch size. A power model with exponential cut-off is proposed to predict the size distribution of contact patches. This work can provide new insights for estimating the patch-dependent seismic nucleation length and slip stability of subsurface joints.
期刊介绍:
The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.