与石墨烯封装的核壳铁铜纳米合金耦合的双单原子位点用于促进氧还原反应

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2024-09-19 DOI:10.1039/D4TA05015K
Katam Srinivas, Zhuo Chen, Anran Chen, He Huang, Chengtao Yang, Fei Wang, Ming-qiang Zhu and Yuanfu Chen
{"title":"与石墨烯封装的核壳铁铜纳米合金耦合的双单原子位点用于促进氧还原反应","authors":"Katam Srinivas, Zhuo Chen, Anran Chen, He Huang, Chengtao Yang, Fei Wang, Ming-qiang Zhu and Yuanfu Chen","doi":"10.1039/D4TA05015K","DOIUrl":null,"url":null,"abstract":"<p >Replacing platinum-based electrocatalysts with iron single-atom catalysts (Fe–N<small><sub>4</sub></small>–C) for the oxygen reduction reaction (ORR) remains challenging due to the symmetric electronic structure of atomically dispersed Fe–N<small><sub>4</sub></small> sites and sluggish kinetics. To address this issue, we introduce Cu–N<small><sub><em>x</em></sub></small> sites and graphene-encapsulated core–shell Fe–Cu nanoalloy (FeCu@G) particles into the Fe–N<small><sub><em>x</em></sub></small> site surroundings through the self-assembly and pyrolysis of a metal–organic framework (MOF). This strategy leverages synergistic interactions with the associated species to modify the uniform electronic structure of Fe single-atom sites, thereby enhancing oxygen-adsorption/desorption kinetics. Density functional theory (DFT) calculations reveal that the incorporation of Cu–N<small><sub><em>x</em></sub></small> sites and FeCu@G nanoalloy particles significantly alters the electronic structure of Fe–N<small><sub><em>x</em></sub></small> sites, leading to improved ORR activity. Consequently, the optimized FeCu-DSAs@CNT, comprising dual single-atom sites (DSAs: Fe–N<small><sub><em>x</em></sub></small> and Cu–N<small><sub><em>x</em></sub></small>) and FeCu@G nanoalloy within MOF-derived nitrogen-doped carbon nanotubes (CNTs), exhibits a significantly improved half-wave potential (<em>E</em><small><sub>1/2</sub></small> = 0.91 V) and feasible ORR kinetics (Tafel slope = 48.15 mV dec<small><sup>−1</sup></small>), surpassing the Pt/C benchmark (<em>E</em><small><sub>1/2</sub></small> = 0.847 V and Tafel slope = 56.76 mV dec<small><sup>−1</sup></small>). Notably, FeCu-DSAs@CNT shows a 58 mV more positive <em>E</em><small><sub>1/2</sub></small> compared to monometallic Fe–SAs@CNT, attributed to synergistic interactions with Cu species. Moreover, it demonstrates excellent power density, specific capacity, and cycling stability in a lab-made zinc–air battery, outpacing the Pt/C-battery. This study addresses gaps in understanding Fe–N<small><sub><em>x</em></sub></small> site interactions with associated species, providing valuable insights for the advancement of Fe–N<small><sub><em>x</em></sub></small>–C electrocatalysts.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual single-atom sites coupled with graphene-encapsulated core–shell Fe–Cu nanoalloy for boosting the oxygen reduction reaction†\",\"authors\":\"Katam Srinivas, Zhuo Chen, Anran Chen, He Huang, Chengtao Yang, Fei Wang, Ming-qiang Zhu and Yuanfu Chen\",\"doi\":\"10.1039/D4TA05015K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Replacing platinum-based electrocatalysts with iron single-atom catalysts (Fe–N<small><sub>4</sub></small>–C) for the oxygen reduction reaction (ORR) remains challenging due to the symmetric electronic structure of atomically dispersed Fe–N<small><sub>4</sub></small> sites and sluggish kinetics. To address this issue, we introduce Cu–N<small><sub><em>x</em></sub></small> sites and graphene-encapsulated core–shell Fe–Cu nanoalloy (FeCu@G) particles into the Fe–N<small><sub><em>x</em></sub></small> site surroundings through the self-assembly and pyrolysis of a metal–organic framework (MOF). This strategy leverages synergistic interactions with the associated species to modify the uniform electronic structure of Fe single-atom sites, thereby enhancing oxygen-adsorption/desorption kinetics. Density functional theory (DFT) calculations reveal that the incorporation of Cu–N<small><sub><em>x</em></sub></small> sites and FeCu@G nanoalloy particles significantly alters the electronic structure of Fe–N<small><sub><em>x</em></sub></small> sites, leading to improved ORR activity. Consequently, the optimized FeCu-DSAs@CNT, comprising dual single-atom sites (DSAs: Fe–N<small><sub><em>x</em></sub></small> and Cu–N<small><sub><em>x</em></sub></small>) and FeCu@G nanoalloy within MOF-derived nitrogen-doped carbon nanotubes (CNTs), exhibits a significantly improved half-wave potential (<em>E</em><small><sub>1/2</sub></small> = 0.91 V) and feasible ORR kinetics (Tafel slope = 48.15 mV dec<small><sup>−1</sup></small>), surpassing the Pt/C benchmark (<em>E</em><small><sub>1/2</sub></small> = 0.847 V and Tafel slope = 56.76 mV dec<small><sup>−1</sup></small>). Notably, FeCu-DSAs@CNT shows a 58 mV more positive <em>E</em><small><sub>1/2</sub></small> compared to monometallic Fe–SAs@CNT, attributed to synergistic interactions with Cu species. Moreover, it demonstrates excellent power density, specific capacity, and cycling stability in a lab-made zinc–air battery, outpacing the Pt/C-battery. This study addresses gaps in understanding Fe–N<small><sub><em>x</em></sub></small> site interactions with associated species, providing valuable insights for the advancement of Fe–N<small><sub><em>x</em></sub></small>–C electrocatalysts.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta05015k\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta05015k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

用铁单原子催化剂(Fe-N4-C)取代铂基电催化剂进行氧还原反应(ORR)仍然具有挑战性,原因在于原子分散的 Fe-N4 位点的对称电子结构和缓慢的动力学。为了解决这个问题,我们通过金属有机框架(MOF)的自组装和热解,在 Fe-Nx 位点周围引入了 Cu-Nx 位点和石墨烯封装的核壳铁铜纳米合金(FeCu@G)颗粒。这种策略利用了与相关物种的协同作用,改变了铁单质子位点的均匀电子结构,从而提高了氧气吸附/解吸动力学。密度泛函理论(DFT)计算显示,Cu-Nx 位点和 FeCu@G 纳米合金的加入显著改变了 Fe-Nx 位点的电子结构,从而提高了 ORR 活性。因此,在 MOF 衍生的掺氮碳纳米管(CNT)中包含双单原子位点(DSA:Fe-Nx 和 Cu-Nx)和 FeCu@G 纳米合金的优化 FeCu-DSAs@CNT 显示出明显改善的半波电位(E1/2 = 0.91 V)和可行的 ORR 动力学(Tafel 斜坡 = 48.15 mV dec-1),超过了 Pt/C 基准(E1/2 = 0.847 V 和 Tafel 斜坡 = 56.76 mV dec-1)。值得注意的是,与单金属 Fe-SAs@CNT 相比,FeCu-DSAs@CNT 的 E1/2 正值高出 58 mV,这归因于与铜物种的协同作用。此外,它在实验室制造的锌-空气电池中表现出了卓越的功率密度、比容量和循环稳定性,超过了 Pt/C 电池。这项研究填补了人们对 Fe-Nx 位点与相关物种相互作用的认识空白,为 Fe-Nx-C 电催化剂的发展提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual single-atom sites coupled with graphene-encapsulated core–shell Fe–Cu nanoalloy for boosting the oxygen reduction reaction†

Replacing platinum-based electrocatalysts with iron single-atom catalysts (Fe–N4–C) for the oxygen reduction reaction (ORR) remains challenging due to the symmetric electronic structure of atomically dispersed Fe–N4 sites and sluggish kinetics. To address this issue, we introduce Cu–Nx sites and graphene-encapsulated core–shell Fe–Cu nanoalloy (FeCu@G) particles into the Fe–Nx site surroundings through the self-assembly and pyrolysis of a metal–organic framework (MOF). This strategy leverages synergistic interactions with the associated species to modify the uniform electronic structure of Fe single-atom sites, thereby enhancing oxygen-adsorption/desorption kinetics. Density functional theory (DFT) calculations reveal that the incorporation of Cu–Nx sites and FeCu@G nanoalloy particles significantly alters the electronic structure of Fe–Nx sites, leading to improved ORR activity. Consequently, the optimized FeCu-DSAs@CNT, comprising dual single-atom sites (DSAs: Fe–Nx and Cu–Nx) and FeCu@G nanoalloy within MOF-derived nitrogen-doped carbon nanotubes (CNTs), exhibits a significantly improved half-wave potential (E1/2 = 0.91 V) and feasible ORR kinetics (Tafel slope = 48.15 mV dec−1), surpassing the Pt/C benchmark (E1/2 = 0.847 V and Tafel slope = 56.76 mV dec−1). Notably, FeCu-DSAs@CNT shows a 58 mV more positive E1/2 compared to monometallic Fe–SAs@CNT, attributed to synergistic interactions with Cu species. Moreover, it demonstrates excellent power density, specific capacity, and cycling stability in a lab-made zinc–air battery, outpacing the Pt/C-battery. This study addresses gaps in understanding Fe–Nx site interactions with associated species, providing valuable insights for the advancement of Fe–Nx–C electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
A local Proton−Transport Promoter for Industrial CO2 Electroreduction to Multicarbon Products Enhanced cycling performance of B-doped LiNi0.8Co0.1Mn0.1O2 cathodes prepared by the solid-state method Enhanced Electrochemical Performance of NiSbS/NiSb/NiS Nanocomposites Anchored on Graphite Nanosheets for Sodium-Ion Battery Applications Facile engineering of CoS/rGO heterostructures on carbon cloth for efficient all-pH hydrogen evolution reaction and alkaline water electrolysis Inverse analysis-guided development of acid-tolerant nanoporous high-entropy alloy catalysts for enhanced water-splitting performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1