CdS:In/Cu2ZnSn(S,Se)4 异质结的低温退火可提高 14.5% 效率的 Kesterite 太阳能电池

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-09-19 DOI:10.1021/acsenergylett.4c02118
Jianming Xu, Changcheng Cui, Dongxing Kou, Zucheng Wu, Wenhui Zhou, Zhengji Zhou, Shengjie Yuan, Yafang Qi, Yuena Meng, Litao Han, Sixin Wu
{"title":"CdS:In/Cu2ZnSn(S,Se)4 异质结的低温退火可提高 14.5% 效率的 Kesterite 太阳能电池","authors":"Jianming Xu, Changcheng Cui, Dongxing Kou, Zucheng Wu, Wenhui Zhou, Zhengji Zhou, Shengjie Yuan, Yafang Qi, Yuena Meng, Litao Han, Sixin Wu","doi":"10.1021/acsenergylett.4c02118","DOIUrl":null,"url":null,"abstract":"The persistent challenge in kesterite solar cells is the low open-circuit voltage (<i>V</i><sub>oc</sub>) and fill factor (FF) due to nonradiative recombination at the CdS/Cu<sub>2</sub>ZnSn(S,Se)<sub>4</sub> (CZTSSe) interface. Here we demonstrate a convenient combination of low-temperature annealing and In doping within the buffer layer to establish an electrically benign high-quality CdS:In/CZTSSe heterojunction. The low-temperature annealing facilitates the migration of Cu, Zn, and Sn impurity elements from the buffer layer to the absorber side, improving lattice match and reducing detrimental defects and the conduction band offset (CBO) barrier involving large recombination losses. The In doping boosts the donor concentration and crystallinity of the buffer layer, thereby improving the electron transport and extraction processes. Consequently, the CdS:In device achieves the highest efficiency of 14.5% with the <i>V</i><sub>oc,deficit</sub> decreasing from 348 mV to 287 mV and the FF increasing from 66.6% to 70.3%, promising a significant efficiency leap for CZTSSe solar cells.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Temperature Annealing of CdS:In/Cu2ZnSn(S,Se)4 Heterojunction Boosting 14.5% Efficiency Kesterite Solar Cells\",\"authors\":\"Jianming Xu, Changcheng Cui, Dongxing Kou, Zucheng Wu, Wenhui Zhou, Zhengji Zhou, Shengjie Yuan, Yafang Qi, Yuena Meng, Litao Han, Sixin Wu\",\"doi\":\"10.1021/acsenergylett.4c02118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The persistent challenge in kesterite solar cells is the low open-circuit voltage (<i>V</i><sub>oc</sub>) and fill factor (FF) due to nonradiative recombination at the CdS/Cu<sub>2</sub>ZnSn(S,Se)<sub>4</sub> (CZTSSe) interface. Here we demonstrate a convenient combination of low-temperature annealing and In doping within the buffer layer to establish an electrically benign high-quality CdS:In/CZTSSe heterojunction. The low-temperature annealing facilitates the migration of Cu, Zn, and Sn impurity elements from the buffer layer to the absorber side, improving lattice match and reducing detrimental defects and the conduction band offset (CBO) barrier involving large recombination losses. The In doping boosts the donor concentration and crystallinity of the buffer layer, thereby improving the electron transport and extraction processes. Consequently, the CdS:In device achieves the highest efficiency of 14.5% with the <i>V</i><sub>oc,deficit</sub> decreasing from 348 mV to 287 mV and the FF increasing from 66.6% to 70.3%, promising a significant efficiency leap for CZTSSe solar cells.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenergylett.4c02118\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c02118","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于 CdS/Cu2ZnSn(S,Se)4(CZTSSe)界面的非辐射性重组,开路电压(Voc)和填充因子(FF)较低,这是 Kesterite 太阳能电池长期面临的挑战。在这里,我们展示了低温退火和在缓冲层中掺杂 In 的简便组合,从而建立了一个电性良好的高质量 CdS:In/CZTSSe 异质结。低温退火有利于铜、锌和锡杂质元素从缓冲层迁移到吸收侧,从而改善了晶格匹配,减少了有害缺陷和涉及大量重组损耗的导带偏移(CBO)势垒。铟的掺杂提高了缓冲层的供体浓度和结晶度,从而改善了电子传输和萃取过程。因此,CdS:In 器件的效率最高,达到 14.5%,Voc,deficit 从 348 mV 下降到 287 mV,FF 从 66.6% 上升到 70.3%,有望实现 CZTSSe 太阳能电池效率的显著飞跃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-Temperature Annealing of CdS:In/Cu2ZnSn(S,Se)4 Heterojunction Boosting 14.5% Efficiency Kesterite Solar Cells
The persistent challenge in kesterite solar cells is the low open-circuit voltage (Voc) and fill factor (FF) due to nonradiative recombination at the CdS/Cu2ZnSn(S,Se)4 (CZTSSe) interface. Here we demonstrate a convenient combination of low-temperature annealing and In doping within the buffer layer to establish an electrically benign high-quality CdS:In/CZTSSe heterojunction. The low-temperature annealing facilitates the migration of Cu, Zn, and Sn impurity elements from the buffer layer to the absorber side, improving lattice match and reducing detrimental defects and the conduction band offset (CBO) barrier involving large recombination losses. The In doping boosts the donor concentration and crystallinity of the buffer layer, thereby improving the electron transport and extraction processes. Consequently, the CdS:In device achieves the highest efficiency of 14.5% with the Voc,deficit decreasing from 348 mV to 287 mV and the FF increasing from 66.6% to 70.3%, promising a significant efficiency leap for CZTSSe solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
Layer Distortion Engineering for Spontaneous Charge Separation in Two-Dimensional Perovskites Recycling Spent LiCoO2 for Improved 4.6 V Performance In Situ Generated Zwitterionic Interface for Reversible Zn Anodes Coloring Tetrahedral Semiconductors: Synthesis and Photoluminescence Enhancement of Ternary II-III2-VI4 Colloidal Nanocrystals Stabilizing Graphite Anode in Electrolytes with Nanoscale Anion Networking for High-Rate Lithium Storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1