{"title":"配体-金属电荷转移 (LMCT) 催化:利用简单的铈催化剂实现惰性 C-H 和 C-C 键的选择性官能化","authors":"Qing An, Liang Chang, Hui Pan, Zhiwei Zuo","doi":"10.1021/acs.accounts.4c00510","DOIUrl":null,"url":null,"abstract":"Chemists have long pursued harnessing light energy and photoexcitation processes for synthetic transformations. Ligand-to-metal charge transfer (LMCT) in high-valent metal complexes often triggers bond homolysis, generating oxidized ligand-centered radicals and reduced metal centers. While photoinduced oxidative activations can be enabled, this process, typically seen as photochemical decomposition, remains underexplored in catalytic applications. To mitigate decomposition during LMCT excitation, we developed a catalytic cycle integrating in situ coordination, LMCT, and ligand homolysis to activate ligated alcohols transiently into alkoxy radicals. This catalytic approach leverages Ce(IV) LMCT excitation and highly reactive alkoxy radical intermediates for selective functionalizations of C(sp<sup>3</sup>)–H and C(sp<sup>3</sup>)–C(sp<sup>3</sup>) bonds under mild conditions. In this Account, we discuss these advancements, highlighting the practical utility of cost-effective cerium salts as catalysts and their potential to develop innovative transformations, addressing long-standing synthetic challenges.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ligand-to-Metal Charge Transfer (LMCT) Catalysis: Harnessing Simple Cerium Catalysts for Selective Functionalization of Inert C–H and C–C Bonds\",\"authors\":\"Qing An, Liang Chang, Hui Pan, Zhiwei Zuo\",\"doi\":\"10.1021/acs.accounts.4c00510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemists have long pursued harnessing light energy and photoexcitation processes for synthetic transformations. Ligand-to-metal charge transfer (LMCT) in high-valent metal complexes often triggers bond homolysis, generating oxidized ligand-centered radicals and reduced metal centers. While photoinduced oxidative activations can be enabled, this process, typically seen as photochemical decomposition, remains underexplored in catalytic applications. To mitigate decomposition during LMCT excitation, we developed a catalytic cycle integrating in situ coordination, LMCT, and ligand homolysis to activate ligated alcohols transiently into alkoxy radicals. This catalytic approach leverages Ce(IV) LMCT excitation and highly reactive alkoxy radical intermediates for selective functionalizations of C(sp<sup>3</sup>)–H and C(sp<sup>3</sup>)–C(sp<sup>3</sup>) bonds under mild conditions. In this Account, we discuss these advancements, highlighting the practical utility of cost-effective cerium salts as catalysts and their potential to develop innovative transformations, addressing long-standing synthetic challenges.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.accounts.4c00510\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.accounts.4c00510","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Ligand-to-Metal Charge Transfer (LMCT) Catalysis: Harnessing Simple Cerium Catalysts for Selective Functionalization of Inert C–H and C–C Bonds
Chemists have long pursued harnessing light energy and photoexcitation processes for synthetic transformations. Ligand-to-metal charge transfer (LMCT) in high-valent metal complexes often triggers bond homolysis, generating oxidized ligand-centered radicals and reduced metal centers. While photoinduced oxidative activations can be enabled, this process, typically seen as photochemical decomposition, remains underexplored in catalytic applications. To mitigate decomposition during LMCT excitation, we developed a catalytic cycle integrating in situ coordination, LMCT, and ligand homolysis to activate ligated alcohols transiently into alkoxy radicals. This catalytic approach leverages Ce(IV) LMCT excitation and highly reactive alkoxy radical intermediates for selective functionalizations of C(sp3)–H and C(sp3)–C(sp3) bonds under mild conditions. In this Account, we discuss these advancements, highlighting the practical utility of cost-effective cerium salts as catalysts and their potential to develop innovative transformations, addressing long-standing synthetic challenges.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.