Xinyu Gong , Yuxi Teng , Jianli Zhang , Qi Gan , Ming Song , Ameen Alaraj , Peter Kner , Yajun Yan
{"title":"在大肠杆菌中构建基于转录抑制因子的基因转换器,以调控色氨酸衍生途径。","authors":"Xinyu Gong , Yuxi Teng , Jianli Zhang , Qi Gan , Ming Song , Ameen Alaraj , Peter Kner , Yajun Yan","doi":"10.1016/j.ymben.2024.09.008","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient microbial cell factories require intricate and precise metabolic regulations for optimized production, which can be significantly aided by implementing regulatory genetic circuits with versatile functions. However, constructing functionally diverse genetic circuits in host strains is challenging. Especially, functional diversification based on transcriptional repressors has been rarely explored due to the difficulty in inverting their repression properties. To address this, we proposed a design logic to create transcriptional repressor-based genetic inverters for functional enrichment. As proof of concept, a tryptophan-inducible genetic inverter was constructed by integrating two sets of transcriptional repressors, <em>PtrpO1</em>-TrpR1 and <em>PtetO1</em>-TetR. In this genetic inverter, the repression of TetR towards <em>PtetO1</em> could be alleviated by the tryptophan-TrpR1 complex in the presence of tryptophan, leading to the activated output. Subsequently, we optimized the dynamic performance of the inverter and constructed tryptophan-triggered dynamic activation systems. Further coupling of the original repression function of <em>PtrpO1</em>-TrpR1 with inverter variants realized the tryptophan-triggered bifunctional regulation system. Finally, the dynamic regulation systems enabled tryptophan production monitoring. These systems also remarkably increased the titers of the tryptophan derivatives tryptamine and violacein by 2.0-fold and 7.4-fold, respectively. The successful design and application of the genetic inverter enhanced the applicability of transcriptional repressors.</div></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"86 ","pages":"Pages 66-77"},"PeriodicalIF":6.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Architecting a transcriptional repressor-based genetic inverter for tryptophan derived pathway regulation in Escherichia coli\",\"authors\":\"Xinyu Gong , Yuxi Teng , Jianli Zhang , Qi Gan , Ming Song , Ameen Alaraj , Peter Kner , Yajun Yan\",\"doi\":\"10.1016/j.ymben.2024.09.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient microbial cell factories require intricate and precise metabolic regulations for optimized production, which can be significantly aided by implementing regulatory genetic circuits with versatile functions. However, constructing functionally diverse genetic circuits in host strains is challenging. Especially, functional diversification based on transcriptional repressors has been rarely explored due to the difficulty in inverting their repression properties. To address this, we proposed a design logic to create transcriptional repressor-based genetic inverters for functional enrichment. As proof of concept, a tryptophan-inducible genetic inverter was constructed by integrating two sets of transcriptional repressors, <em>PtrpO1</em>-TrpR1 and <em>PtetO1</em>-TetR. In this genetic inverter, the repression of TetR towards <em>PtetO1</em> could be alleviated by the tryptophan-TrpR1 complex in the presence of tryptophan, leading to the activated output. Subsequently, we optimized the dynamic performance of the inverter and constructed tryptophan-triggered dynamic activation systems. Further coupling of the original repression function of <em>PtrpO1</em>-TrpR1 with inverter variants realized the tryptophan-triggered bifunctional regulation system. Finally, the dynamic regulation systems enabled tryptophan production monitoring. These systems also remarkably increased the titers of the tryptophan derivatives tryptamine and violacein by 2.0-fold and 7.4-fold, respectively. The successful design and application of the genetic inverter enhanced the applicability of transcriptional repressors.</div></div>\",\"PeriodicalId\":18483,\"journal\":{\"name\":\"Metabolic engineering\",\"volume\":\"86 \",\"pages\":\"Pages 66-77\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S109671762400123X\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S109671762400123X","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Architecting a transcriptional repressor-based genetic inverter for tryptophan derived pathway regulation in Escherichia coli
Efficient microbial cell factories require intricate and precise metabolic regulations for optimized production, which can be significantly aided by implementing regulatory genetic circuits with versatile functions. However, constructing functionally diverse genetic circuits in host strains is challenging. Especially, functional diversification based on transcriptional repressors has been rarely explored due to the difficulty in inverting their repression properties. To address this, we proposed a design logic to create transcriptional repressor-based genetic inverters for functional enrichment. As proof of concept, a tryptophan-inducible genetic inverter was constructed by integrating two sets of transcriptional repressors, PtrpO1-TrpR1 and PtetO1-TetR. In this genetic inverter, the repression of TetR towards PtetO1 could be alleviated by the tryptophan-TrpR1 complex in the presence of tryptophan, leading to the activated output. Subsequently, we optimized the dynamic performance of the inverter and constructed tryptophan-triggered dynamic activation systems. Further coupling of the original repression function of PtrpO1-TrpR1 with inverter variants realized the tryptophan-triggered bifunctional regulation system. Finally, the dynamic regulation systems enabled tryptophan production monitoring. These systems also remarkably increased the titers of the tryptophan derivatives tryptamine and violacein by 2.0-fold and 7.4-fold, respectively. The successful design and application of the genetic inverter enhanced the applicability of transcriptional repressors.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.