大幅延长陆地生物圈的寿命

R. J. Graham, Itay Halevy, Dorian Abbot
{"title":"大幅延长陆地生物圈的寿命","authors":"R. J. Graham, Itay Halevy, Dorian Abbot","doi":"arxiv-2409.10714","DOIUrl":null,"url":null,"abstract":"Approximately one billion years (Gyr) in the future, as the Sun brightens,\nEarth's carbonate-silicate cycle is expected to drive CO$_2$ below the minimum\nlevel required by vascular land plants, eliminating most macroscopic land life.\nHere, we couple global-mean models of temperature- and CO$_2$-dependent plant\nproductivity for C$_3$ and C$_4$ plants, silicate weathering, and climate to\nre-examine the time remaining for terrestrial plants. If weathering is weakly\ntemperature-dependent (as recent data suggest) and/or strongly\nCO$_2$-dependent, we find that the interplay between climate, productivity, and\nweathering causes the future luminosity-driven CO$_2$ decrease to slow and\ntemporarily reverse, averting plant CO$_2$ starvation. This dramatically\nlengthens plant survival from 1 Gyr up to $\\sim$1.6-1.86 Gyr, until extreme\ntemperatures halt photosynthesis, suggesting a revised kill mechanism for land\nplants and potential doubling of the future lifespan of Earth's land\nmacrobiota. An increased future lifespan for the complex biosphere may imply\nthat Earth life had to achieve a smaller number of ``hard steps'' (unlikely\nevolutionary transitions) to produce intelligent life than previously\nestimated. These results also suggest that complex photosynthetic land life on\nEarth and exoplanets may be able to persist until the onset of the moist\ngreenhouse transition.","PeriodicalId":501044,"journal":{"name":"arXiv - QuanBio - Populations and Evolution","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Substantial extension of the lifetime of the terrestrial biosphere\",\"authors\":\"R. J. Graham, Itay Halevy, Dorian Abbot\",\"doi\":\"arxiv-2409.10714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximately one billion years (Gyr) in the future, as the Sun brightens,\\nEarth's carbonate-silicate cycle is expected to drive CO$_2$ below the minimum\\nlevel required by vascular land plants, eliminating most macroscopic land life.\\nHere, we couple global-mean models of temperature- and CO$_2$-dependent plant\\nproductivity for C$_3$ and C$_4$ plants, silicate weathering, and climate to\\nre-examine the time remaining for terrestrial plants. If weathering is weakly\\ntemperature-dependent (as recent data suggest) and/or strongly\\nCO$_2$-dependent, we find that the interplay between climate, productivity, and\\nweathering causes the future luminosity-driven CO$_2$ decrease to slow and\\ntemporarily reverse, averting plant CO$_2$ starvation. This dramatically\\nlengthens plant survival from 1 Gyr up to $\\\\sim$1.6-1.86 Gyr, until extreme\\ntemperatures halt photosynthesis, suggesting a revised kill mechanism for land\\nplants and potential doubling of the future lifespan of Earth's land\\nmacrobiota. An increased future lifespan for the complex biosphere may imply\\nthat Earth life had to achieve a smaller number of ``hard steps'' (unlikely\\nevolutionary transitions) to produce intelligent life than previously\\nestimated. These results also suggest that complex photosynthetic land life on\\nEarth and exoplanets may be able to persist until the onset of the moist\\ngreenhouse transition.\",\"PeriodicalId\":501044,\"journal\":{\"name\":\"arXiv - QuanBio - Populations and Evolution\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Populations and Evolution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Populations and Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这里,我们将 C$_3$ 和 C$_4$ 植物的温度和 CO$_2$ 依赖性植物生产力的全球均值模型、硅酸盐风化和气候结合起来,重新审视了陆生植物的剩余时间。如果风化作用对温度的依赖性较弱(如最近的数据所示)和/或对 CO$_2$ 的依赖性较强,我们发现气候、生产力和风化作用之间的相互作用会导致未来光照驱动的 CO$_2$ 减少速度减缓并暂时逆转,从而避免植物的 CO$_2$ 饥饿。这极大地延长了植物的生存期,从 1 Gyr 延长到 1.6-1.86 Gyr,直到极端温度停止光合作用,这表明陆地植物的致死机制得到了修正,地球陆地生物群的未来寿命有可能延长一倍。复杂生物圈未来寿命的延长可能意味着地球生命产生智慧生命所需的 "艰难步骤"(不太可能发生的进化转变)比先前估计的要少。这些结果还表明,地球上和系外行星上的复杂光合陆地生命可能能够持续到湿温室过渡的开始。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Substantial extension of the lifetime of the terrestrial biosphere
Approximately one billion years (Gyr) in the future, as the Sun brightens, Earth's carbonate-silicate cycle is expected to drive CO$_2$ below the minimum level required by vascular land plants, eliminating most macroscopic land life. Here, we couple global-mean models of temperature- and CO$_2$-dependent plant productivity for C$_3$ and C$_4$ plants, silicate weathering, and climate to re-examine the time remaining for terrestrial plants. If weathering is weakly temperature-dependent (as recent data suggest) and/or strongly CO$_2$-dependent, we find that the interplay between climate, productivity, and weathering causes the future luminosity-driven CO$_2$ decrease to slow and temporarily reverse, averting plant CO$_2$ starvation. This dramatically lengthens plant survival from 1 Gyr up to $\sim$1.6-1.86 Gyr, until extreme temperatures halt photosynthesis, suggesting a revised kill mechanism for land plants and potential doubling of the future lifespan of Earth's land macrobiota. An increased future lifespan for the complex biosphere may imply that Earth life had to achieve a smaller number of ``hard steps'' (unlikely evolutionary transitions) to produce intelligent life than previously estimated. These results also suggest that complex photosynthetic land life on Earth and exoplanets may be able to persist until the onset of the moist greenhouse transition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biological arrow of time: Emergence of tangled information hierarchies and self-modelling dynamics k-mer-based approaches to bridging pangenomics and population genetics A weather-driven mathematical model of Culex population abundance and the impact of vector control interventions Dynamics of solutions to a multi-patch epidemic model with a saturation incidence mechanism Higher-order interactions in random Lotka-Volterra communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1