{"title":"脉冲和弛豫振荡状态下铒光纤激光器的临界行为","authors":"A.M. Smirnov , A.A. Rybaltovsky , I.A. Nechepurenko , A.V. Dorofeenko , O.V. Butov","doi":"10.1016/j.optlastec.2024.111823","DOIUrl":null,"url":null,"abstract":"<div><p>Miniaturization of erbium fiber lasers is a crucial task, which implies a use of heavily doped fibers. In dense ensemble, interaction of erbium ions changes a configuration of quantum levels of gain medium and leads to pulsed generation. As a result, heavily doped erbium lasers demonstrate two thresholds, the first one associated with an onset of lasing in the pulsed regime, and the second with a transition to CW. Operation features near these two thresholds have been established experimentally. For the first time, a power-law behavior of the system parameters – pulses frequency, duration and peak intensity – was revealed in a wide range of pump rates around both thresholds. The power exponents were associated with critical indices of phase transition. Their values were convincingly determined different from integers and half-integers. Critical indexes were shown weakly dependent on the Fabry-Perot and distributed feedback (DFB) laser cavity parameters, which made it possible to experimentally establish the universal dependence of the pulse frequency and duration on the lasing power. The results of the work are extremely useful for determining and predicting the parameters of the designed erbium lasers, due to universality of the critical indices.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical behavior of erbium fiber lasers in pulsed and relaxation oscillations regimes\",\"authors\":\"A.M. Smirnov , A.A. Rybaltovsky , I.A. Nechepurenko , A.V. Dorofeenko , O.V. Butov\",\"doi\":\"10.1016/j.optlastec.2024.111823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Miniaturization of erbium fiber lasers is a crucial task, which implies a use of heavily doped fibers. In dense ensemble, interaction of erbium ions changes a configuration of quantum levels of gain medium and leads to pulsed generation. As a result, heavily doped erbium lasers demonstrate two thresholds, the first one associated with an onset of lasing in the pulsed regime, and the second with a transition to CW. Operation features near these two thresholds have been established experimentally. For the first time, a power-law behavior of the system parameters – pulses frequency, duration and peak intensity – was revealed in a wide range of pump rates around both thresholds. The power exponents were associated with critical indices of phase transition. Their values were convincingly determined different from integers and half-integers. Critical indexes were shown weakly dependent on the Fabry-Perot and distributed feedback (DFB) laser cavity parameters, which made it possible to experimentally establish the universal dependence of the pulse frequency and duration on the lasing power. The results of the work are extremely useful for determining and predicting the parameters of the designed erbium lasers, due to universality of the critical indices.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399224012817\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224012817","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Critical behavior of erbium fiber lasers in pulsed and relaxation oscillations regimes
Miniaturization of erbium fiber lasers is a crucial task, which implies a use of heavily doped fibers. In dense ensemble, interaction of erbium ions changes a configuration of quantum levels of gain medium and leads to pulsed generation. As a result, heavily doped erbium lasers demonstrate two thresholds, the first one associated with an onset of lasing in the pulsed regime, and the second with a transition to CW. Operation features near these two thresholds have been established experimentally. For the first time, a power-law behavior of the system parameters – pulses frequency, duration and peak intensity – was revealed in a wide range of pump rates around both thresholds. The power exponents were associated with critical indices of phase transition. Their values were convincingly determined different from integers and half-integers. Critical indexes were shown weakly dependent on the Fabry-Perot and distributed feedback (DFB) laser cavity parameters, which made it possible to experimentally establish the universal dependence of the pulse frequency and duration on the lasing power. The results of the work are extremely useful for determining and predicting the parameters of the designed erbium lasers, due to universality of the critical indices.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.