Mohsen Heydari, Alireza B. Novinzadeh, Morteza Tayefi
{"title":"多输入多输出非线性离散时间系统的抗起风和鲁棒数据驱动的无模型自适应控制","authors":"Mohsen Heydari, Alireza B. Novinzadeh, Morteza Tayefi","doi":"10.1002/acs.3907","DOIUrl":null,"url":null,"abstract":"This article addresses a solution to one of the main challenges of online data‐driven control (DDC) methods: reducing the sensitivity of the model‐free adaptive control (MFAC) method to initial conditions and control parameters with the new control cost function and added the output error rate and integral along with a new anti‐wind up strategy for multi‐input multi‐output (MIMO) systems. The parameters introduced to the new control law have been validated using the boundary‐input boundary‐output (BIBO) approach to design and converge the controller. The simulation findings on a nonlinear auto‐regressive moving average model with exogenous inputs (NARMAX) system with triangular control input demonstrate that the proposed control rule will outperform to prototype MFAC. Furthermore, to analyze the sensitivity of the controller to the initial conditions and the uncertainties of the control parameters, 30 Monte Carlo simulations were performed with random initial conditions in the presence of disturbance in the control input, and output noise, and the results were compared with the prototype MFAC and conventional PID controller using standard criteria such as integral time absolute error, standard deviation, steady‐state error, and mean maximum error, which shows a noticeable superiority of proposed controller relative to the prototype MFAC.","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"71 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti Wind‐Up and Robust Data‐Driven Model‐Free Adaptive Control for MIMO Nonlinear Discrete‐Time Systems\",\"authors\":\"Mohsen Heydari, Alireza B. Novinzadeh, Morteza Tayefi\",\"doi\":\"10.1002/acs.3907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article addresses a solution to one of the main challenges of online data‐driven control (DDC) methods: reducing the sensitivity of the model‐free adaptive control (MFAC) method to initial conditions and control parameters with the new control cost function and added the output error rate and integral along with a new anti‐wind up strategy for multi‐input multi‐output (MIMO) systems. The parameters introduced to the new control law have been validated using the boundary‐input boundary‐output (BIBO) approach to design and converge the controller. The simulation findings on a nonlinear auto‐regressive moving average model with exogenous inputs (NARMAX) system with triangular control input demonstrate that the proposed control rule will outperform to prototype MFAC. Furthermore, to analyze the sensitivity of the controller to the initial conditions and the uncertainties of the control parameters, 30 Monte Carlo simulations were performed with random initial conditions in the presence of disturbance in the control input, and output noise, and the results were compared with the prototype MFAC and conventional PID controller using standard criteria such as integral time absolute error, standard deviation, steady‐state error, and mean maximum error, which shows a noticeable superiority of proposed controller relative to the prototype MFAC.\",\"PeriodicalId\":50347,\"journal\":{\"name\":\"International Journal of Adaptive Control and Signal Processing\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Adaptive Control and Signal Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/acs.3907\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adaptive Control and Signal Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/acs.3907","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Anti Wind‐Up and Robust Data‐Driven Model‐Free Adaptive Control for MIMO Nonlinear Discrete‐Time Systems
This article addresses a solution to one of the main challenges of online data‐driven control (DDC) methods: reducing the sensitivity of the model‐free adaptive control (MFAC) method to initial conditions and control parameters with the new control cost function and added the output error rate and integral along with a new anti‐wind up strategy for multi‐input multi‐output (MIMO) systems. The parameters introduced to the new control law have been validated using the boundary‐input boundary‐output (BIBO) approach to design and converge the controller. The simulation findings on a nonlinear auto‐regressive moving average model with exogenous inputs (NARMAX) system with triangular control input demonstrate that the proposed control rule will outperform to prototype MFAC. Furthermore, to analyze the sensitivity of the controller to the initial conditions and the uncertainties of the control parameters, 30 Monte Carlo simulations were performed with random initial conditions in the presence of disturbance in the control input, and output noise, and the results were compared with the prototype MFAC and conventional PID controller using standard criteria such as integral time absolute error, standard deviation, steady‐state error, and mean maximum error, which shows a noticeable superiority of proposed controller relative to the prototype MFAC.
期刊介绍:
The International Journal of Adaptive Control and Signal Processing is concerned with the design, synthesis and application of estimators or controllers where adaptive features are needed to cope with uncertainties.Papers on signal processing should also have some relevance to adaptive systems. The journal focus is on model based control design approaches rather than heuristic or rule based control design methods. All papers will be expected to include significant novel material.
Both the theory and application of adaptive systems and system identification are areas of interest. Papers on applications can include problems in the implementation of algorithms for real time signal processing and control. The stability, convergence, robustness and numerical aspects of adaptive algorithms are also suitable topics. The related subjects of controller tuning, filtering, networks and switching theory are also of interest. Principal areas to be addressed include:
Auto-Tuning, Self-Tuning and Model Reference Adaptive Controllers
Nonlinear, Robust and Intelligent Adaptive Controllers
Linear and Nonlinear Multivariable System Identification and Estimation
Identification of Linear Parameter Varying, Distributed and Hybrid Systems
Multiple Model Adaptive Control
Adaptive Signal processing Theory and Algorithms
Adaptation in Multi-Agent Systems
Condition Monitoring Systems
Fault Detection and Isolation Methods
Fault Detection and Isolation Methods
Fault-Tolerant Control (system supervision and diagnosis)
Learning Systems and Adaptive Modelling
Real Time Algorithms for Adaptive Signal Processing and Control
Adaptive Signal Processing and Control Applications
Adaptive Cloud Architectures and Networking
Adaptive Mechanisms for Internet of Things
Adaptive Sliding Mode Control.