{"title":"K-BEST 子空间聚类:内核友好的块对角嵌入式和保全相似性的变换子空间聚类","authors":"Jyoti Maggu, Anurag Goel","doi":"10.1007/s10044-024-01336-2","DOIUrl":null,"url":null,"abstract":"<p>Subspace clustering methods, employing sparse and low-rank models, have demonstrated efficacy in clustering high-dimensional data. These approaches typically assume the separability of input data into distinct subspaces, a premise that does not hold true in general. Furthermore, prevalent low-rank and sparse methods relying on self-expression exhibit effectiveness primarily with linear structure data, facing limitations in processing datasets with intricate nonlinear structures. While kernel subspace clustering methods excel in handling nonlinear structures, they may compromise similarity information during the reconstruction of original data in kernel space. Additionally, these methods may fall short of attaining an affinity matrix with an optimal block-diagonal property. In response to these challenges, this paper introduces a novel subspace clustering approach named Similarity Preserving Kernel Block Diagonal Representation based Transformed Subspace Clustering (KBD-TSC). KBD-TSC contributes in three key aspects: (1) integration of a kernelized version of transform learning within a subspace clustering framework, introducing a block diagonal representation term to generate an affinity matrix with a block-diagonal structure. (2) Construction and integration of a similarity preserving regularizer into the model by minimizing the discrepancy between inner products of the original data and those of the reconstructed data in kernel space. This facilitates enhanced preservation of similarity information between the original data points. (3) Proposal of KBD-TSC by integrating the block diagonal representation term and similarity preserving regularizer into a kernel self-expressing model. The optimization of the proposed model is efficiently addressed through the alternating direction method of multipliers. This study validates the effectiveness of the proposed KBD-TSC method through experimental results obtained from nine datasets, showcasing its potential in addressing the limitations of existing subspace clustering techniques.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"14 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"K-BEST subspace clustering: kernel-friendly block-diagonal embedded and similarity-preserving transformed subspace clustering\",\"authors\":\"Jyoti Maggu, Anurag Goel\",\"doi\":\"10.1007/s10044-024-01336-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Subspace clustering methods, employing sparse and low-rank models, have demonstrated efficacy in clustering high-dimensional data. These approaches typically assume the separability of input data into distinct subspaces, a premise that does not hold true in general. Furthermore, prevalent low-rank and sparse methods relying on self-expression exhibit effectiveness primarily with linear structure data, facing limitations in processing datasets with intricate nonlinear structures. While kernel subspace clustering methods excel in handling nonlinear structures, they may compromise similarity information during the reconstruction of original data in kernel space. Additionally, these methods may fall short of attaining an affinity matrix with an optimal block-diagonal property. In response to these challenges, this paper introduces a novel subspace clustering approach named Similarity Preserving Kernel Block Diagonal Representation based Transformed Subspace Clustering (KBD-TSC). KBD-TSC contributes in three key aspects: (1) integration of a kernelized version of transform learning within a subspace clustering framework, introducing a block diagonal representation term to generate an affinity matrix with a block-diagonal structure. (2) Construction and integration of a similarity preserving regularizer into the model by minimizing the discrepancy between inner products of the original data and those of the reconstructed data in kernel space. This facilitates enhanced preservation of similarity information between the original data points. (3) Proposal of KBD-TSC by integrating the block diagonal representation term and similarity preserving regularizer into a kernel self-expressing model. The optimization of the proposed model is efficiently addressed through the alternating direction method of multipliers. This study validates the effectiveness of the proposed KBD-TSC method through experimental results obtained from nine datasets, showcasing its potential in addressing the limitations of existing subspace clustering techniques.</p>\",\"PeriodicalId\":54639,\"journal\":{\"name\":\"Pattern Analysis and Applications\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Analysis and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10044-024-01336-2\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01336-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Subspace clustering methods, employing sparse and low-rank models, have demonstrated efficacy in clustering high-dimensional data. These approaches typically assume the separability of input data into distinct subspaces, a premise that does not hold true in general. Furthermore, prevalent low-rank and sparse methods relying on self-expression exhibit effectiveness primarily with linear structure data, facing limitations in processing datasets with intricate nonlinear structures. While kernel subspace clustering methods excel in handling nonlinear structures, they may compromise similarity information during the reconstruction of original data in kernel space. Additionally, these methods may fall short of attaining an affinity matrix with an optimal block-diagonal property. In response to these challenges, this paper introduces a novel subspace clustering approach named Similarity Preserving Kernel Block Diagonal Representation based Transformed Subspace Clustering (KBD-TSC). KBD-TSC contributes in three key aspects: (1) integration of a kernelized version of transform learning within a subspace clustering framework, introducing a block diagonal representation term to generate an affinity matrix with a block-diagonal structure. (2) Construction and integration of a similarity preserving regularizer into the model by minimizing the discrepancy between inner products of the original data and those of the reconstructed data in kernel space. This facilitates enhanced preservation of similarity information between the original data points. (3) Proposal of KBD-TSC by integrating the block diagonal representation term and similarity preserving regularizer into a kernel self-expressing model. The optimization of the proposed model is efficiently addressed through the alternating direction method of multipliers. This study validates the effectiveness of the proposed KBD-TSC method through experimental results obtained from nine datasets, showcasing its potential in addressing the limitations of existing subspace clustering techniques.
期刊介绍:
The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.