F. Lazar, H. Lopez-Moreno, E. Wiesman, F. de la Torre, P. Verhulst, J. Sojka, I. Maureira, David Millar, C. Kennedy, J. Mura, J. Zalapa
{"title":"贫瘠浆果表型:解开威斯康星州中部及其他地区蔓越莓(Vaccinium macrocarpon Ait.)遗传污染的谜团","authors":"F. Lazar, H. Lopez-Moreno, E. Wiesman, F. de la Torre, P. Verhulst, J. Sojka, I. Maureira, David Millar, C. Kennedy, J. Mura, J. Zalapa","doi":"10.1007/s11295-024-01665-7","DOIUrl":null,"url":null,"abstract":"<p>Wisconsin is the world’s leading producer of cranberries (<i>Vaccinium macrocarpon</i> Ait.; 2n = 2x = 24). The state produces over twenty-thousand acres that contribute to more than 50% of the global total production, with more than one billion dollars in value. Cranberry growers in the “central sands” of Wisconsin have been experiencing yield decline due to vegetative unproductive genotypes, popularly known as “Barren Berry’’, which consistently remain vegetative and produce no fruit. The purpose of this study was to compare visual inspection in the field to DNA fingerprinting for the early detection of unproductive/barren genotypes. Additionally, the study served as a survey of unproductive genotypes in central Wisconsin, the largest growing region in the world. A total of 839 cranberry leaf samples, from 14 growers representing plantings to four cultivated varieties, were submitted for DNA testing of two visually determined phenotypes: unproductive or barren (n = 646; those that produced little to no fruit), versus productive or fruiting (n = 193). We conducted genetic fingerprinting on the leaf tissue using nine microsatellite markers previously shown to differentiate cranberry genotypes. This study identified a barren berry genotype unique to central Wisconsin, which we denoted “Barren Berry 1”. This genotype accounted for 43% of samples submitted as the barren berry phenotype. Genetic fingerprinting revealed sixty-five different genotypes in beds which were thought to be monocultures of just four cultivated genotypes. Early detection of genetic contamination through visual inspection, genetic testing, and responsible propagation can drastically aid in the management and longevity of cranberry beds, and in turn save time and money to the growers.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Barren Berry phenotype: untangling cranberry (Vaccinium macrocarpon Ait.) genetic contamination in central Wisconsin and beyond\",\"authors\":\"F. Lazar, H. Lopez-Moreno, E. Wiesman, F. de la Torre, P. Verhulst, J. Sojka, I. Maureira, David Millar, C. Kennedy, J. Mura, J. Zalapa\",\"doi\":\"10.1007/s11295-024-01665-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wisconsin is the world’s leading producer of cranberries (<i>Vaccinium macrocarpon</i> Ait.; 2n = 2x = 24). The state produces over twenty-thousand acres that contribute to more than 50% of the global total production, with more than one billion dollars in value. Cranberry growers in the “central sands” of Wisconsin have been experiencing yield decline due to vegetative unproductive genotypes, popularly known as “Barren Berry’’, which consistently remain vegetative and produce no fruit. The purpose of this study was to compare visual inspection in the field to DNA fingerprinting for the early detection of unproductive/barren genotypes. Additionally, the study served as a survey of unproductive genotypes in central Wisconsin, the largest growing region in the world. A total of 839 cranberry leaf samples, from 14 growers representing plantings to four cultivated varieties, were submitted for DNA testing of two visually determined phenotypes: unproductive or barren (n = 646; those that produced little to no fruit), versus productive or fruiting (n = 193). We conducted genetic fingerprinting on the leaf tissue using nine microsatellite markers previously shown to differentiate cranberry genotypes. This study identified a barren berry genotype unique to central Wisconsin, which we denoted “Barren Berry 1”. This genotype accounted for 43% of samples submitted as the barren berry phenotype. Genetic fingerprinting revealed sixty-five different genotypes in beds which were thought to be monocultures of just four cultivated genotypes. Early detection of genetic contamination through visual inspection, genetic testing, and responsible propagation can drastically aid in the management and longevity of cranberry beds, and in turn save time and money to the growers.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11295-024-01665-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11295-024-01665-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The Barren Berry phenotype: untangling cranberry (Vaccinium macrocarpon Ait.) genetic contamination in central Wisconsin and beyond
Wisconsin is the world’s leading producer of cranberries (Vaccinium macrocarpon Ait.; 2n = 2x = 24). The state produces over twenty-thousand acres that contribute to more than 50% of the global total production, with more than one billion dollars in value. Cranberry growers in the “central sands” of Wisconsin have been experiencing yield decline due to vegetative unproductive genotypes, popularly known as “Barren Berry’’, which consistently remain vegetative and produce no fruit. The purpose of this study was to compare visual inspection in the field to DNA fingerprinting for the early detection of unproductive/barren genotypes. Additionally, the study served as a survey of unproductive genotypes in central Wisconsin, the largest growing region in the world. A total of 839 cranberry leaf samples, from 14 growers representing plantings to four cultivated varieties, were submitted for DNA testing of two visually determined phenotypes: unproductive or barren (n = 646; those that produced little to no fruit), versus productive or fruiting (n = 193). We conducted genetic fingerprinting on the leaf tissue using nine microsatellite markers previously shown to differentiate cranberry genotypes. This study identified a barren berry genotype unique to central Wisconsin, which we denoted “Barren Berry 1”. This genotype accounted for 43% of samples submitted as the barren berry phenotype. Genetic fingerprinting revealed sixty-five different genotypes in beds which were thought to be monocultures of just four cultivated genotypes. Early detection of genetic contamination through visual inspection, genetic testing, and responsible propagation can drastically aid in the management and longevity of cranberry beds, and in turn save time and money to the growers.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.