Siegfried Baehr, Fabian Fritz, Stefan Adami, Thomas Ammann, Nikolaus A. Adams, Michael F. Zaeh
{"title":"各种工艺气体条件下 PBF-LB/M 过程中熔池热平衡的研究","authors":"Siegfried Baehr, Fabian Fritz, Stefan Adami, Thomas Ammann, Nikolaus A. Adams, Michael F. Zaeh","doi":"10.3390/met14091058","DOIUrl":null,"url":null,"abstract":"During the powder bed fusion of metals using a laser beam (PBF-LB/M), an inert atmosphere is maintained in the build chamber to avoid reactions of the liquid metal with ambient air leading to the creation of oxides or nitrides, which alter the mechanical properties of the processed part. A continuous gas flow is guided over the process zone to remove spatters and fumes. This flow induces a convective heat transfer from the molten metal to the gas, which, depending on the level of the heat flow, may alter the melt pool dimensions by influencing the cooling rate. The present work investigated these phenomena with single-line trials, both experimentally and numerically. For this reason, a smoothed-particle hydrodynamics model was utilized to investigate the temperatures of the melt pool, cooling rates, and the integral heat balance with various gas atmospheres. In parallel, an on-axis pyrometer was set up on an experimental PBF-LB/M machine to capture the surface emissions of the melt pool. The atmosphere in the simulations and experiments was varied between argon, helium, and two mixtures thereof. The results showed a slight increase in the cooling rates with an increasing fraction of helium in the process gas. Consistently, a slight decrease in the melt pool temperatures and dimensions was found.","PeriodicalId":18461,"journal":{"name":"Metals","volume":"12 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigations on the Heat Balance of the Melt Pool During PBF-LB/M Under Various Process Gases\",\"authors\":\"Siegfried Baehr, Fabian Fritz, Stefan Adami, Thomas Ammann, Nikolaus A. Adams, Michael F. Zaeh\",\"doi\":\"10.3390/met14091058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the powder bed fusion of metals using a laser beam (PBF-LB/M), an inert atmosphere is maintained in the build chamber to avoid reactions of the liquid metal with ambient air leading to the creation of oxides or nitrides, which alter the mechanical properties of the processed part. A continuous gas flow is guided over the process zone to remove spatters and fumes. This flow induces a convective heat transfer from the molten metal to the gas, which, depending on the level of the heat flow, may alter the melt pool dimensions by influencing the cooling rate. The present work investigated these phenomena with single-line trials, both experimentally and numerically. For this reason, a smoothed-particle hydrodynamics model was utilized to investigate the temperatures of the melt pool, cooling rates, and the integral heat balance with various gas atmospheres. In parallel, an on-axis pyrometer was set up on an experimental PBF-LB/M machine to capture the surface emissions of the melt pool. The atmosphere in the simulations and experiments was varied between argon, helium, and two mixtures thereof. The results showed a slight increase in the cooling rates with an increasing fraction of helium in the process gas. Consistently, a slight decrease in the melt pool temperatures and dimensions was found.\",\"PeriodicalId\":18461,\"journal\":{\"name\":\"Metals\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/met14091058\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/met14091058","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigations on the Heat Balance of the Melt Pool During PBF-LB/M Under Various Process Gases
During the powder bed fusion of metals using a laser beam (PBF-LB/M), an inert atmosphere is maintained in the build chamber to avoid reactions of the liquid metal with ambient air leading to the creation of oxides or nitrides, which alter the mechanical properties of the processed part. A continuous gas flow is guided over the process zone to remove spatters and fumes. This flow induces a convective heat transfer from the molten metal to the gas, which, depending on the level of the heat flow, may alter the melt pool dimensions by influencing the cooling rate. The present work investigated these phenomena with single-line trials, both experimentally and numerically. For this reason, a smoothed-particle hydrodynamics model was utilized to investigate the temperatures of the melt pool, cooling rates, and the integral heat balance with various gas atmospheres. In parallel, an on-axis pyrometer was set up on an experimental PBF-LB/M machine to capture the surface emissions of the melt pool. The atmosphere in the simulations and experiments was varied between argon, helium, and two mixtures thereof. The results showed a slight increase in the cooling rates with an increasing fraction of helium in the process gas. Consistently, a slight decrease in the melt pool temperatures and dimensions was found.
期刊介绍:
Metals (ISSN 2075-4701) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Metals provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of metals.