Alexandra Sakai, Gagandeep Singh, Mahsa Khoshbakht, Scott Bittner, Christiane V. Löhr, Randy Diaz-Tapia, Prajakta Warang, Kris White, Luke Le Luo, Blanton Tolbert, Mario Blanco, Amy Chow, Mitchell Guttman, Cuiping Li, Yiming Bao, Joses Ho, Sebastian Maurer-Stroh, Arnab Chatterjee, Sumit Chanda, Adolfo García-Sastre, Michael Schotsaert, John R. Teijaro, Hong M. Moulton, David A. Stein
{"title":"靶向病毒 RNA 的肽结合吗啉寡聚体抑制 SARS-CoV-2 在小鼠肺部的生长","authors":"Alexandra Sakai, Gagandeep Singh, Mahsa Khoshbakht, Scott Bittner, Christiane V. Löhr, Randy Diaz-Tapia, Prajakta Warang, Kris White, Luke Le Luo, Blanton Tolbert, Mario Blanco, Amy Chow, Mitchell Guttman, Cuiping Li, Yiming Bao, Joses Ho, Sebastian Maurer-Stroh, Arnab Chatterjee, Sumit Chanda, Adolfo García-Sastre, Michael Schotsaert, John R. Teijaro, Hong M. Moulton, David A. Stein","doi":"10.1016/j.omtn.2024.102331","DOIUrl":null,"url":null,"abstract":"Further development of direct-acting antiviral agents against human SARS-CoV-2 infections remains a public health priority. Here, we report that an antisense peptide-conjugated morpholino oligomer (PPMO) called 5′END-2, targeting a highly conserved sequence in the 5′ UTR of SARS-CoV-2 genomic RNA, potently suppressed SARS-CoV-2 growth <ce:italic>in vitro</ce:italic> and <ce:italic>in vivo</ce:italic>. In HeLa-ACE 2 cells, 5′END-2 produced IC<ce:inf loc=\"post\">50</ce:inf> values of between 40 nM and 1.15 μM in challenges using six genetically disparate strains of SARS-CoV-2, including JN.1. <ce:italic>In vivo</ce:italic>, using K18-hACE2 mice and the WA-1/2020 virus isolate, two doses of 5′END-2 at 10 mg/kg, administered intranasally on the day before and the day after infection, produced approximately 1.4 log10 virus titer reduction in lung tissue at 3 days post-infection. Under a similar dosing schedule, intratracheal administration of 1.0–2.0 mg/kg 5′END-2 produced over 3.5 log10 virus growth suppression in mouse lungs. Electrophoretic mobility shift assays characterized specific binding of 5′END-2 to its complementary target RNA. Furthermore, using reporter constructs containing SARS-CoV-2 5′ UTR leader sequence, in an in-cell system, we observed that 5′END-2 could interfere with translation in a sequence-specific manner. The results demonstrate that direct pulmonary delivery of 5′END-2 PPMO is a promising antiviral strategy against SARS-CoV-2 infections and warrants further development.","PeriodicalId":18821,"journal":{"name":"Molecular Therapy. Nucleic Acids","volume":"14 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of SARS-CoV-2 growth in the lungs of mice by a peptide-conjugated morpholino oligomer targeting viral RNA\",\"authors\":\"Alexandra Sakai, Gagandeep Singh, Mahsa Khoshbakht, Scott Bittner, Christiane V. Löhr, Randy Diaz-Tapia, Prajakta Warang, Kris White, Luke Le Luo, Blanton Tolbert, Mario Blanco, Amy Chow, Mitchell Guttman, Cuiping Li, Yiming Bao, Joses Ho, Sebastian Maurer-Stroh, Arnab Chatterjee, Sumit Chanda, Adolfo García-Sastre, Michael Schotsaert, John R. Teijaro, Hong M. Moulton, David A. Stein\",\"doi\":\"10.1016/j.omtn.2024.102331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Further development of direct-acting antiviral agents against human SARS-CoV-2 infections remains a public health priority. Here, we report that an antisense peptide-conjugated morpholino oligomer (PPMO) called 5′END-2, targeting a highly conserved sequence in the 5′ UTR of SARS-CoV-2 genomic RNA, potently suppressed SARS-CoV-2 growth <ce:italic>in vitro</ce:italic> and <ce:italic>in vivo</ce:italic>. In HeLa-ACE 2 cells, 5′END-2 produced IC<ce:inf loc=\\\"post\\\">50</ce:inf> values of between 40 nM and 1.15 μM in challenges using six genetically disparate strains of SARS-CoV-2, including JN.1. <ce:italic>In vivo</ce:italic>, using K18-hACE2 mice and the WA-1/2020 virus isolate, two doses of 5′END-2 at 10 mg/kg, administered intranasally on the day before and the day after infection, produced approximately 1.4 log10 virus titer reduction in lung tissue at 3 days post-infection. Under a similar dosing schedule, intratracheal administration of 1.0–2.0 mg/kg 5′END-2 produced over 3.5 log10 virus growth suppression in mouse lungs. Electrophoretic mobility shift assays characterized specific binding of 5′END-2 to its complementary target RNA. Furthermore, using reporter constructs containing SARS-CoV-2 5′ UTR leader sequence, in an in-cell system, we observed that 5′END-2 could interfere with translation in a sequence-specific manner. The results demonstrate that direct pulmonary delivery of 5′END-2 PPMO is a promising antiviral strategy against SARS-CoV-2 infections and warrants further development.\",\"PeriodicalId\":18821,\"journal\":{\"name\":\"Molecular Therapy. Nucleic Acids\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy. Nucleic Acids\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.omtn.2024.102331\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy. Nucleic Acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtn.2024.102331","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Inhibition of SARS-CoV-2 growth in the lungs of mice by a peptide-conjugated morpholino oligomer targeting viral RNA
Further development of direct-acting antiviral agents against human SARS-CoV-2 infections remains a public health priority. Here, we report that an antisense peptide-conjugated morpholino oligomer (PPMO) called 5′END-2, targeting a highly conserved sequence in the 5′ UTR of SARS-CoV-2 genomic RNA, potently suppressed SARS-CoV-2 growth in vitro and in vivo. In HeLa-ACE 2 cells, 5′END-2 produced IC50 values of between 40 nM and 1.15 μM in challenges using six genetically disparate strains of SARS-CoV-2, including JN.1. In vivo, using K18-hACE2 mice and the WA-1/2020 virus isolate, two doses of 5′END-2 at 10 mg/kg, administered intranasally on the day before and the day after infection, produced approximately 1.4 log10 virus titer reduction in lung tissue at 3 days post-infection. Under a similar dosing schedule, intratracheal administration of 1.0–2.0 mg/kg 5′END-2 produced over 3.5 log10 virus growth suppression in mouse lungs. Electrophoretic mobility shift assays characterized specific binding of 5′END-2 to its complementary target RNA. Furthermore, using reporter constructs containing SARS-CoV-2 5′ UTR leader sequence, in an in-cell system, we observed that 5′END-2 could interfere with translation in a sequence-specific manner. The results demonstrate that direct pulmonary delivery of 5′END-2 PPMO is a promising antiviral strategy against SARS-CoV-2 infections and warrants further development.
期刊介绍:
Molecular Therapy Nucleic Acids is an international, open-access journal that publishes high-quality research in nucleic-acid-based therapeutics to treat and correct genetic and acquired diseases. It is the official journal of the American Society of Gene & Cell Therapy and is built upon the success of Molecular Therapy. The journal focuses on gene- and oligonucleotide-based therapies and publishes peer-reviewed research, reviews, and commentaries. Its impact factor for 2022 is 8.8. The subject areas covered include the development of therapeutics based on nucleic acids and their derivatives, vector development for RNA-based therapeutics delivery, utilization of gene-modifying agents like Zn finger nucleases and triplex-forming oligonucleotides, pre-clinical target validation, safety and efficacy studies, and clinical trials.