探索非均质表面:通过主动学习重构富钛 SrTiO3(110)

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2024-09-16 DOI:10.1039/D4DD00231H
Ralf Wanzenböck, Esther Heid, Michele Riva, Giada Franceschi, Alexander M. Imre, Jesús Carrete, Ulrike Diebold and Georg K. H. Madsen
{"title":"探索非均质表面:通过主动学习重构富钛 SrTiO3(110)","authors":"Ralf Wanzenböck, Esther Heid, Michele Riva, Giada Franceschi, Alexander M. Imre, Jesús Carrete, Ulrike Diebold and Georg K. H. Madsen","doi":"10.1039/D4DD00231H","DOIUrl":null,"url":null,"abstract":"<p >The investigation of inhomogeneous surfaces, where various local structures coexist, is crucial for understanding interfaces of technological interest, yet it presents significant challenges. Here, we study the atomic configurations of the (2 × <em>m</em>) Ti-rich surfaces at (110)-oriented SrTiO<small><sub>3</sub></small> by bringing together scanning tunneling microscopy and transferable neural-network force fields combined with evolutionary exploration. We leverage an active learning methodology to iteratively extend the training data as needed for different configurations. Training on only small well-known reconstructions, we are able to extrapolate to the complicated and diverse overlayers encountered in different regions of the inhomogeneous SrTiO<small><sub>3</sub></small>(110)-(2 × <em>m</em>) surface. Our machine-learning-backed approach generates several new candidate structures, in good agreement with experiment and verified using density functional theory. The approach could be extended to other complex metal oxides featuring large coexisting surface reconstructions.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 10","pages":" 2137-2145"},"PeriodicalIF":6.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00231h?page=search","citationCount":"0","resultStr":"{\"title\":\"Exploring inhomogeneous surfaces: Ti-rich SrTiO3(110) reconstructions via active learning†\",\"authors\":\"Ralf Wanzenböck, Esther Heid, Michele Riva, Giada Franceschi, Alexander M. Imre, Jesús Carrete, Ulrike Diebold and Georg K. H. Madsen\",\"doi\":\"10.1039/D4DD00231H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The investigation of inhomogeneous surfaces, where various local structures coexist, is crucial for understanding interfaces of technological interest, yet it presents significant challenges. Here, we study the atomic configurations of the (2 × <em>m</em>) Ti-rich surfaces at (110)-oriented SrTiO<small><sub>3</sub></small> by bringing together scanning tunneling microscopy and transferable neural-network force fields combined with evolutionary exploration. We leverage an active learning methodology to iteratively extend the training data as needed for different configurations. Training on only small well-known reconstructions, we are able to extrapolate to the complicated and diverse overlayers encountered in different regions of the inhomogeneous SrTiO<small><sub>3</sub></small>(110)-(2 × <em>m</em>) surface. Our machine-learning-backed approach generates several new candidate structures, in good agreement with experiment and verified using density functional theory. The approach could be extended to other complex metal oxides featuring large coexisting surface reconstructions.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 10\",\"pages\":\" 2137-2145\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00231h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00231h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00231h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对各种局部结构共存的非均质表面进行研究,对于了解具有技术意义的界面至关重要,但这也带来了巨大的挑战。在这里,我们通过将扫描隧道显微镜和可转移神经网络力场与进化探索相结合,研究了 (110) 取向 SrTiO3 的 (2 × m) 富钛表面的原子构型。我们利用主动学习方法,根据不同配置的需要迭代扩展训练数据。我们仅在众所周知的小型重构上进行训练,就能推断出在不均匀的 SrTiO3(110)-(2 × m) 表面的不同区域所遇到的复杂多样的覆盖层。我们的机器学习方法生成了几种新的候选结构,与实验结果吻合,并通过密度泛函理论进行了验证。该方法可扩展到其他具有大量共存表面重构特征的复杂金属氧化物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring inhomogeneous surfaces: Ti-rich SrTiO3(110) reconstructions via active learning†

The investigation of inhomogeneous surfaces, where various local structures coexist, is crucial for understanding interfaces of technological interest, yet it presents significant challenges. Here, we study the atomic configurations of the (2 × m) Ti-rich surfaces at (110)-oriented SrTiO3 by bringing together scanning tunneling microscopy and transferable neural-network force fields combined with evolutionary exploration. We leverage an active learning methodology to iteratively extend the training data as needed for different configurations. Training on only small well-known reconstructions, we are able to extrapolate to the complicated and diverse overlayers encountered in different regions of the inhomogeneous SrTiO3(110)-(2 × m) surface. Our machine-learning-backed approach generates several new candidate structures, in good agreement with experiment and verified using density functional theory. The approach could be extended to other complex metal oxides featuring large coexisting surface reconstructions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Back cover ArcaNN: automated enhanced sampling generation of training sets for chemically reactive machine learning interatomic potentials. Sorting polyolefins with near-infrared spectroscopy: identification of optimal data analysis pipelines and machine learning classifiers†‡ High accuracy uncertainty-aware interatomic force modeling with equivariant Bayesian neural networks† Correction: A smile is all you need: predicting limiting activity coefficients from SMILES with natural language processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1