FENDI:在量子互联网中实现高保真纠缠分发

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE/ACM Transactions on Networking Pub Date : 2024-09-13 DOI:10.1109/TNET.2024.3450271
Huayue Gu;Zhouyu Li;Ruozhou Yu;Xiaojian Wang;Fangtong Zhou;Jianqing Liu;Guoliang Xue
{"title":"FENDI:在量子互联网中实现高保真纠缠分发","authors":"Huayue Gu;Zhouyu Li;Ruozhou Yu;Xiaojian Wang;Fangtong Zhou;Jianqing Liu;Guoliang Xue","doi":"10.1109/TNET.2024.3450271","DOIUrl":null,"url":null,"abstract":"A quantum network distributes quantum entanglements between remote nodes, and is key to many applications in secure communication, quantum sensing and distributed quantum computing. This paper explores the fundamental trade-off between the throughput and the quality of entanglement distribution in a multi-hop quantum repeater network. Compared to existing work which aims to heuristically maximize the entanglement distribution rate (EDR) and/or entanglement fidelity, our goal is to characterize the maximum achievable worst-case fidelity, while satisfying a bound on the maximum achievable expected EDR between an arbitrary pair of quantum nodes. This characterization will provide fundamental bounds on the achievable performance region of a quantum network, which can assist with the design of quantum network topology, protocols and applications. However, the task is highly non-trivial and is NP-hard as we shall prove. Our main contribution is a fully polynomial-time approximation scheme to approximate the achievable worst-case fidelity subject to a strict expected EDR bound, combining an optimal fidelity-agnostic EDR-maximizing formulation and a worst-case isotropic noise model. The EDR and fidelity guarantees can be implemented by a post-selection-and-storage protocol with quantum memories. By developing a discrete-time quantum network simulator, we conduct simulations to show the characterized performance region (the approximate Pareto frontier) of a network, and demonstrate that the designed protocol can achieve the performance region while existing protocols exhibit a substantial gap.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"5033-5048"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FENDI: Toward High-Fidelity Entanglement Distribution in the Quantum Internet\",\"authors\":\"Huayue Gu;Zhouyu Li;Ruozhou Yu;Xiaojian Wang;Fangtong Zhou;Jianqing Liu;Guoliang Xue\",\"doi\":\"10.1109/TNET.2024.3450271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A quantum network distributes quantum entanglements between remote nodes, and is key to many applications in secure communication, quantum sensing and distributed quantum computing. This paper explores the fundamental trade-off between the throughput and the quality of entanglement distribution in a multi-hop quantum repeater network. Compared to existing work which aims to heuristically maximize the entanglement distribution rate (EDR) and/or entanglement fidelity, our goal is to characterize the maximum achievable worst-case fidelity, while satisfying a bound on the maximum achievable expected EDR between an arbitrary pair of quantum nodes. This characterization will provide fundamental bounds on the achievable performance region of a quantum network, which can assist with the design of quantum network topology, protocols and applications. However, the task is highly non-trivial and is NP-hard as we shall prove. Our main contribution is a fully polynomial-time approximation scheme to approximate the achievable worst-case fidelity subject to a strict expected EDR bound, combining an optimal fidelity-agnostic EDR-maximizing formulation and a worst-case isotropic noise model. The EDR and fidelity guarantees can be implemented by a post-selection-and-storage protocol with quantum memories. By developing a discrete-time quantum network simulator, we conduct simulations to show the characterized performance region (the approximate Pareto frontier) of a network, and demonstrate that the designed protocol can achieve the performance region while existing protocols exhibit a substantial gap.\",\"PeriodicalId\":13443,\"journal\":{\"name\":\"IEEE/ACM Transactions on Networking\",\"volume\":\"32 6\",\"pages\":\"5033-5048\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10679782/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10679782/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FENDI: Toward High-Fidelity Entanglement Distribution in the Quantum Internet
A quantum network distributes quantum entanglements between remote nodes, and is key to many applications in secure communication, quantum sensing and distributed quantum computing. This paper explores the fundamental trade-off between the throughput and the quality of entanglement distribution in a multi-hop quantum repeater network. Compared to existing work which aims to heuristically maximize the entanglement distribution rate (EDR) and/or entanglement fidelity, our goal is to characterize the maximum achievable worst-case fidelity, while satisfying a bound on the maximum achievable expected EDR between an arbitrary pair of quantum nodes. This characterization will provide fundamental bounds on the achievable performance region of a quantum network, which can assist with the design of quantum network topology, protocols and applications. However, the task is highly non-trivial and is NP-hard as we shall prove. Our main contribution is a fully polynomial-time approximation scheme to approximate the achievable worst-case fidelity subject to a strict expected EDR bound, combining an optimal fidelity-agnostic EDR-maximizing formulation and a worst-case isotropic noise model. The EDR and fidelity guarantees can be implemented by a post-selection-and-storage protocol with quantum memories. By developing a discrete-time quantum network simulator, we conduct simulations to show the characterized performance region (the approximate Pareto frontier) of a network, and demonstrate that the designed protocol can achieve the performance region while existing protocols exhibit a substantial gap.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE/ACM Transactions on Networking
IEEE/ACM Transactions on Networking 工程技术-电信学
CiteScore
8.20
自引率
5.40%
发文量
246
审稿时长
4-8 weeks
期刊介绍: The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.
期刊最新文献
Table of Contents IEEE/ACM Transactions on Networking Information for Authors IEEE/ACM Transactions on Networking Society Information IEEE/ACM Transactions on Networking Publication Information FPCA: Parasitic Coding Authentication for UAVs by FM Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1