Jing He, Lingyu Wu, Wei Du, Fei Zhang, Shinuan Lin, Yun Ling, Kang Ren, Zhonglue Chen, Haibo Chen, Wen Su
{"title":"仪器计时起立行走测试和基于机器学习的左旋多巴反应评估:一项试点研究","authors":"Jing He, Lingyu Wu, Wei Du, Fei Zhang, Shinuan Lin, Yun Ling, Kang Ren, Zhonglue Chen, Haibo Chen, Wen Su","doi":"10.1186/s12984-024-01452-4","DOIUrl":null,"url":null,"abstract":"The acute levodopa challenge test (ALCT) is a universal method for evaluating levodopa response (LR). Assessment of Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale part III (MDS-UPDRS III) is a key step in ALCT, which is some extent subjective and inconvenience. This study developed a machine learning method based on instrumented Timed Up and Go (iTUG) test to evaluate the patients’ response to levodopa and compared it with classic ALCT. Forty-two patients with parkinsonism were recruited and administered with levodopa. MDS-UPDRS III and the iTUG were conducted in both OFF-and ON-medication state. Kinematic parameters, signal time and frequency domain features were extracted from sensor data. Two XGBoost models, levodopa response regression (LRR) model and motor symptom evaluation (MSE) model, were trained to predict the levodopa response (LR) of the patients using leave-one-subject-out cross-validation. The LR predicted by the LRR model agreed with that calculated by the classic ALCT (ICC = 0.95). When the LRR model was used to detect patients with a positive LR, the positive predictive value was 0.94. Machine learning based on wearable sensor data and the iTUG test may be effective and comprehensive for evaluating LR and predicting the benefit of dopaminergic therapy.","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instrumented timed up and go test and machine learning-based levodopa response evaluation: a pilot study\",\"authors\":\"Jing He, Lingyu Wu, Wei Du, Fei Zhang, Shinuan Lin, Yun Ling, Kang Ren, Zhonglue Chen, Haibo Chen, Wen Su\",\"doi\":\"10.1186/s12984-024-01452-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The acute levodopa challenge test (ALCT) is a universal method for evaluating levodopa response (LR). Assessment of Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale part III (MDS-UPDRS III) is a key step in ALCT, which is some extent subjective and inconvenience. This study developed a machine learning method based on instrumented Timed Up and Go (iTUG) test to evaluate the patients’ response to levodopa and compared it with classic ALCT. Forty-two patients with parkinsonism were recruited and administered with levodopa. MDS-UPDRS III and the iTUG were conducted in both OFF-and ON-medication state. Kinematic parameters, signal time and frequency domain features were extracted from sensor data. Two XGBoost models, levodopa response regression (LRR) model and motor symptom evaluation (MSE) model, were trained to predict the levodopa response (LR) of the patients using leave-one-subject-out cross-validation. The LR predicted by the LRR model agreed with that calculated by the classic ALCT (ICC = 0.95). When the LRR model was used to detect patients with a positive LR, the positive predictive value was 0.94. Machine learning based on wearable sensor data and the iTUG test may be effective and comprehensive for evaluating LR and predicting the benefit of dopaminergic therapy.\",\"PeriodicalId\":16384,\"journal\":{\"name\":\"Journal of NeuroEngineering and Rehabilitation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of NeuroEngineering and Rehabilitation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12984-024-01452-4\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-024-01452-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Instrumented timed up and go test and machine learning-based levodopa response evaluation: a pilot study
The acute levodopa challenge test (ALCT) is a universal method for evaluating levodopa response (LR). Assessment of Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale part III (MDS-UPDRS III) is a key step in ALCT, which is some extent subjective and inconvenience. This study developed a machine learning method based on instrumented Timed Up and Go (iTUG) test to evaluate the patients’ response to levodopa and compared it with classic ALCT. Forty-two patients with parkinsonism were recruited and administered with levodopa. MDS-UPDRS III and the iTUG were conducted in both OFF-and ON-medication state. Kinematic parameters, signal time and frequency domain features were extracted from sensor data. Two XGBoost models, levodopa response regression (LRR) model and motor symptom evaluation (MSE) model, were trained to predict the levodopa response (LR) of the patients using leave-one-subject-out cross-validation. The LR predicted by the LRR model agreed with that calculated by the classic ALCT (ICC = 0.95). When the LRR model was used to detect patients with a positive LR, the positive predictive value was 0.94. Machine learning based on wearable sensor data and the iTUG test may be effective and comprehensive for evaluating LR and predicting the benefit of dopaminergic therapy.
期刊介绍:
Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.