Yang Bai, Guoqing Feng, Qingbin Yang, Tingting Hua, Bowen Li, Hao-Lin Guo, Yuan Liu, Qing Yuan, Niansong Qian and Bin Zheng
{"title":"将(WO + ICG)@PLGA@脂质/质粒 DNA 纳米复合物作为核壳载体,用于协同遗传/光热疗法","authors":"Yang Bai, Guoqing Feng, Qingbin Yang, Tingting Hua, Bowen Li, Hao-Lin Guo, Yuan Liu, Qing Yuan, Niansong Qian and Bin Zheng","doi":"10.1039/D4QM00330F","DOIUrl":null,"url":null,"abstract":"<p >The synergistic therapeutic strategy of combining gene delivery and photothermal effects as an efficient cancer treatment method has garnered significant attention. Here, we developed a core–shell theragnostic platform ((WO + ICG)@PLGA@PL) capable of simultaneously delivering a fluorescent imaging agent, a photothermal agent, and genes. The self-assembled platform comprises four components: indocyanine green (ICG) for <em>in vivo</em> localization tracking, W<small><sub>18</sub></small>O<small><sub>49</sub></small> (WO) nanoparticles for photothermal therapy, PLGA as a core for encapsulating ICG and WO, and positive liposomes for DNA interaction and particle stabilization. The results showed that (WO + ICG)@PLGA@PL could not only achieve a synergistic therapy effect of gene delivery and photothermal effect, but also effectively inhibit tumor growth <em>in vivo</em>. Additionally, the (WO + ICG)@PLGA@PL nanocomplex could be a promising tool for next-generation combined gene and photothermal therapy.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(WO + ICG)@PLGA@lipid/plasmid DNA nanocomplexes as core–shell vectors for synergistic genetic/photothermal therapy†\",\"authors\":\"Yang Bai, Guoqing Feng, Qingbin Yang, Tingting Hua, Bowen Li, Hao-Lin Guo, Yuan Liu, Qing Yuan, Niansong Qian and Bin Zheng\",\"doi\":\"10.1039/D4QM00330F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The synergistic therapeutic strategy of combining gene delivery and photothermal effects as an efficient cancer treatment method has garnered significant attention. Here, we developed a core–shell theragnostic platform ((WO + ICG)@PLGA@PL) capable of simultaneously delivering a fluorescent imaging agent, a photothermal agent, and genes. The self-assembled platform comprises four components: indocyanine green (ICG) for <em>in vivo</em> localization tracking, W<small><sub>18</sub></small>O<small><sub>49</sub></small> (WO) nanoparticles for photothermal therapy, PLGA as a core for encapsulating ICG and WO, and positive liposomes for DNA interaction and particle stabilization. The results showed that (WO + ICG)@PLGA@PL could not only achieve a synergistic therapy effect of gene delivery and photothermal effect, but also effectively inhibit tumor growth <em>in vivo</em>. Additionally, the (WO + ICG)@PLGA@PL nanocomplex could be a promising tool for next-generation combined gene and photothermal therapy.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00330f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00330f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
作为一种高效的癌症治疗方法,基因递送与光热效应相结合的协同治疗策略备受关注。在这里,我们开发了一种核壳热敏平台((WO + ICG)@PLGA@PL),能够同时递送荧光成像剂、光热剂和基因。该自组装平台由四部分组成:用于体内定位追踪的吲哚菁绿(ICG)、用于光热疗法的 W18O49(WO)纳米颗粒、作为封装 ICG 和 WO 核心的 PLGA 以及用于 DNA 相互作用和颗粒稳定的正脂质体。结果表明,(WO + ICG)@PLGA@PL 不仅能实现基因递送和光热效应的协同治疗效果,还能有效抑制体内肿瘤的生长。此外,(WO + ICG)@PLGA@PL纳米复合物有望成为下一代基因与光热联合治疗的工具。
(WO + ICG)@PLGA@lipid/plasmid DNA nanocomplexes as core–shell vectors for synergistic genetic/photothermal therapy†
The synergistic therapeutic strategy of combining gene delivery and photothermal effects as an efficient cancer treatment method has garnered significant attention. Here, we developed a core–shell theragnostic platform ((WO + ICG)@PLGA@PL) capable of simultaneously delivering a fluorescent imaging agent, a photothermal agent, and genes. The self-assembled platform comprises four components: indocyanine green (ICG) for in vivo localization tracking, W18O49 (WO) nanoparticles for photothermal therapy, PLGA as a core for encapsulating ICG and WO, and positive liposomes for DNA interaction and particle stabilization. The results showed that (WO + ICG)@PLGA@PL could not only achieve a synergistic therapy effect of gene delivery and photothermal effect, but also effectively inhibit tumor growth in vivo. Additionally, the (WO + ICG)@PLGA@PL nanocomplex could be a promising tool for next-generation combined gene and photothermal therapy.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.