{"title":"商业和金融领域的机器学习:文献综述与研究机会","authors":"Hanyao Gao, Gang Kou, Haiming Liang, Hengjie Zhang, Xiangrui Chao, Cong-Cong Li, Yucheng Dong","doi":"10.1186/s40854-024-00629-z","DOIUrl":null,"url":null,"abstract":"This study provides a comprehensive review of machine learning (ML) applications in the fields of business and finance. First, it introduces the most commonly used ML techniques and explores their diverse applications in marketing, stock analysis, demand forecasting, and energy marketing. In particular, this review critically analyzes over 100 articles and reveals a strong inclination toward deep learning techniques, such as deep neural, convolutional neural, and recurrent neural networks, which have garnered immense popularity in financial contexts owing to their remarkable performance. This review shows that ML techniques, particularly deep learning, demonstrate substantial potential for enhancing business decision-making processes and achieving more accurate and efficient predictions of financial outcomes. In particular, ML techniques exhibit promising research prospects in cryptocurrencies, financial crime detection, and marketing, underscoring the extensive opportunities in these areas. However, some limitations regarding ML applications in the business and finance domains remain, including issues related to linguistic information processes, interpretability, data quality, generalization, and the oversights related to social networks and causal relationships. Thus, addressing these challenges is a promising avenue for future research.","PeriodicalId":37175,"journal":{"name":"Financial Innovation","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning in business and finance: a literature review and research opportunities\",\"authors\":\"Hanyao Gao, Gang Kou, Haiming Liang, Hengjie Zhang, Xiangrui Chao, Cong-Cong Li, Yucheng Dong\",\"doi\":\"10.1186/s40854-024-00629-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study provides a comprehensive review of machine learning (ML) applications in the fields of business and finance. First, it introduces the most commonly used ML techniques and explores their diverse applications in marketing, stock analysis, demand forecasting, and energy marketing. In particular, this review critically analyzes over 100 articles and reveals a strong inclination toward deep learning techniques, such as deep neural, convolutional neural, and recurrent neural networks, which have garnered immense popularity in financial contexts owing to their remarkable performance. This review shows that ML techniques, particularly deep learning, demonstrate substantial potential for enhancing business decision-making processes and achieving more accurate and efficient predictions of financial outcomes. In particular, ML techniques exhibit promising research prospects in cryptocurrencies, financial crime detection, and marketing, underscoring the extensive opportunities in these areas. However, some limitations regarding ML applications in the business and finance domains remain, including issues related to linguistic information processes, interpretability, data quality, generalization, and the oversights related to social networks and causal relationships. Thus, addressing these challenges is a promising avenue for future research.\",\"PeriodicalId\":37175,\"journal\":{\"name\":\"Financial Innovation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Financial Innovation\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1186/s40854-024-00629-z\",\"RegionNum\":1,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Innovation","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1186/s40854-024-00629-z","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
摘要
本研究全面回顾了机器学习(ML)在商业和金融领域的应用。首先,它介绍了最常用的 ML 技术,并探讨了它们在市场营销、股票分析、需求预测和能源营销中的各种应用。特别是,这篇综述批判性地分析了 100 多篇文章,并揭示了深度学习技术的强烈倾向,如深度神经网络、卷积神经网络和递归神经网络。本综述表明,ML 技术,尤其是深度学习,在增强商业决策过程和实现更准确、更高效的金融结果预测方面展现出巨大的潜力。特别是,ML 技术在加密货币、金融犯罪检测和市场营销方面展现出了广阔的研究前景,凸显了这些领域的巨大商机。然而,ML 在商业和金融领域的应用仍存在一些局限性,包括与语言信息处理、可解释性、数据质量、泛化有关的问题,以及与社交网络和因果关系有关的疏漏。因此,应对这些挑战是未来研究的一个大有可为的途径。
Machine learning in business and finance: a literature review and research opportunities
This study provides a comprehensive review of machine learning (ML) applications in the fields of business and finance. First, it introduces the most commonly used ML techniques and explores their diverse applications in marketing, stock analysis, demand forecasting, and energy marketing. In particular, this review critically analyzes over 100 articles and reveals a strong inclination toward deep learning techniques, such as deep neural, convolutional neural, and recurrent neural networks, which have garnered immense popularity in financial contexts owing to their remarkable performance. This review shows that ML techniques, particularly deep learning, demonstrate substantial potential for enhancing business decision-making processes and achieving more accurate and efficient predictions of financial outcomes. In particular, ML techniques exhibit promising research prospects in cryptocurrencies, financial crime detection, and marketing, underscoring the extensive opportunities in these areas. However, some limitations regarding ML applications in the business and finance domains remain, including issues related to linguistic information processes, interpretability, data quality, generalization, and the oversights related to social networks and causal relationships. Thus, addressing these challenges is a promising avenue for future research.
期刊介绍:
Financial Innovation (FIN), a Springer OA journal sponsored by Southwestern University of Finance and Economics, serves as a global academic platform for sharing research findings in all aspects of financial innovation during the electronic business era. It facilitates interactions among researchers, policymakers, and practitioners, focusing on new financial instruments, technologies, markets, and institutions. Emphasizing emerging financial products enabled by disruptive technologies, FIN publishes high-quality academic and practical papers. The journal is peer-reviewed, indexed in SSCI, Scopus, Google Scholar, CNKI, CQVIP, and more.