设计用于机械臂快速轨迹跟踪的最小无模型控制结构

Q1 Mathematics Applied Sciences Pub Date : 2024-09-18 DOI:10.3390/app14188405
Baptiste Toussaint, Maxime Raison
{"title":"设计用于机械臂快速轨迹跟踪的最小无模型控制结构","authors":"Baptiste Toussaint, Maxime Raison","doi":"10.3390/app14188405","DOIUrl":null,"url":null,"abstract":"This paper designs a minimal neural network (NN)-based model-free control structure for the fast, accurate trajectory tracking of robotic arms, crucial for large movements, velocities, and accelerations. Trajectory tracking requires an accurate dynamic model or aggressive feedback. However, such models are hard to obtain due to nonlinearities and uncertainties, especially in low-cost, 3D-printed robotic arms. A recently proposed model-free architecture has used an NN for the dynamic compensation of a proportional derivative controller, but the minimal requirements and optimal conditions remain unclear, leading to overly complex architectures. This study aims to identify these requirements and design a minimal NN-based model-free control structure for trajectory tracking. Two architectures are compared, one NN per joint (INN) and one global NN (GNN), each tested on two serial robotic arms in simulations and real scenarios. The results show that the architecture reduces tracking errors (RMSE < 2°). The INN is accurate for decoupled joint dynamics and requires fewer training data than the GNN. A table summarizes the design process. Future works will apply this control structure to low-cost robotic arms and micro-movements.","PeriodicalId":8224,"journal":{"name":"Applied Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Minimal Model-Free Control Structure for Fast Trajectory Tracking of Robotic Arms\",\"authors\":\"Baptiste Toussaint, Maxime Raison\",\"doi\":\"10.3390/app14188405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper designs a minimal neural network (NN)-based model-free control structure for the fast, accurate trajectory tracking of robotic arms, crucial for large movements, velocities, and accelerations. Trajectory tracking requires an accurate dynamic model or aggressive feedback. However, such models are hard to obtain due to nonlinearities and uncertainties, especially in low-cost, 3D-printed robotic arms. A recently proposed model-free architecture has used an NN for the dynamic compensation of a proportional derivative controller, but the minimal requirements and optimal conditions remain unclear, leading to overly complex architectures. This study aims to identify these requirements and design a minimal NN-based model-free control structure for trajectory tracking. Two architectures are compared, one NN per joint (INN) and one global NN (GNN), each tested on two serial robotic arms in simulations and real scenarios. The results show that the architecture reduces tracking errors (RMSE < 2°). The INN is accurate for decoupled joint dynamics and requires fewer training data than the GNN. A table summarizes the design process. Future works will apply this control structure to low-cost robotic arms and micro-movements.\",\"PeriodicalId\":8224,\"journal\":{\"name\":\"Applied Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/app14188405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/app14188405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文设计了一种基于最小神经网络(NN)的无模型控制结构,用于快速、准确地跟踪机器人手臂的轨迹,这对于大运动、大速度和大加速度至关重要。轨迹跟踪需要精确的动态模型或积极的反馈。然而,由于非线性和不确定性,这种模型很难获得,尤其是在低成本的 3D 打印机械臂中。最近提出的一种无模型架构使用了 NN 对比例导数控制器进行动态补偿,但其最低要求和最佳条件仍不明确,导致架构过于复杂。本研究旨在确定这些要求,并为轨迹跟踪设计一种基于 NN 的最小无模型控制结构。研究比较了两种架构,一种是每个关节一个 NN(INN),另一种是一个全局 NN(GNN),每种架构都在两个串行机械臂上进行了模拟和实际场景测试。结果表明,该架构可减少跟踪误差(RMSE < 2°)。与 GNN 相比,INNN 对解耦关节动态的处理更加准确,所需的训练数据也更少。表格总结了设计过程。未来的工作将把这种控制结构应用于低成本机械臂和微型运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of Minimal Model-Free Control Structure for Fast Trajectory Tracking of Robotic Arms
This paper designs a minimal neural network (NN)-based model-free control structure for the fast, accurate trajectory tracking of robotic arms, crucial for large movements, velocities, and accelerations. Trajectory tracking requires an accurate dynamic model or aggressive feedback. However, such models are hard to obtain due to nonlinearities and uncertainties, especially in low-cost, 3D-printed robotic arms. A recently proposed model-free architecture has used an NN for the dynamic compensation of a proportional derivative controller, but the minimal requirements and optimal conditions remain unclear, leading to overly complex architectures. This study aims to identify these requirements and design a minimal NN-based model-free control structure for trajectory tracking. Two architectures are compared, one NN per joint (INN) and one global NN (GNN), each tested on two serial robotic arms in simulations and real scenarios. The results show that the architecture reduces tracking errors (RMSE < 2°). The INN is accurate for decoupled joint dynamics and requires fewer training data than the GNN. A table summarizes the design process. Future works will apply this control structure to low-cost robotic arms and micro-movements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Sciences
Applied Sciences Mathematics-Applied Mathematics
CiteScore
6.40
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊介绍: APPS is an international journal. APPS covers a wide spectrum of pure and applied mathematics in science and technology, promoting especially papers presented at Carpato-Balkan meetings. The Editorial Board of APPS takes a very active role in selecting and refereeing papers, ensuring the best quality of contemporary mathematics and its applications. APPS is abstracted in Zentralblatt für Mathematik. The APPS journal uses Double blind peer review.
期刊最新文献
The Effectiveness of Exercise Programs on Balance, Functional Ability, Quality of Life, and Depression in Progressive Supranuclear Palsy: A Case Study Application of Historical Comprehensive Multimodal Transportation Data for Testing the Commuting Time Paradox: Evidence from the Portland, OR Region Real-Time Optimization of Ancillary Service Allocation in Renewable Energy Microgrids Using Virtual Load Exploring the Association between Pro-Inflammation and the Early Diagnosis of Alzheimer’s Disease in Buccal Cells Using Immunocytochemistry and Machine Learning Techniques HumanEnerg Hotspot: Conceptual Design of an Agile Toolkit for Human Energy Reinforcement in Industry 5.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1