{"title":"双曲空间非线性邱卡方程基态的存在性、对称性和正则性","authors":"Diksha Gupta, K. Sreenadh","doi":"arxiv-2409.10236","DOIUrl":null,"url":null,"abstract":"In this paper, we explore the positive solutions of the following nonlinear\nChoquard equation involving the green kernel of the fractional operator\n$(-\\Delta_{\\mathbb{B}^N})^{-\\alpha/2}$ in the hyperbolic space \\begin{equation} \\begin{aligned} -\\Delta_{\\mathbb{B}^{N}} u \\, - \\, \\lambda u \\, &= \\left[(-\n\\Delta_{\\mathbb{B}^{N}})^{-\\frac{\\alpha}{2}}|u|^p\\right]|u|^{p-2}u, \\end{aligned} \\end{equation} where $\\Delta_{\\mathbb{B}^{N}}$ denotes the Laplace-Beltrami\noperator on $\\mathbb{B}^{N}$, $\\lambda \\leq \\frac{(N-1)^2}{4}$, $1 < p <\n2^*_{\\alpha} = \\frac{N+\\alpha}{N-2}$, $0 < \\alpha < N$, $N \\geq 3$,\n$2^*_\\alpha$ is the critical exponent in the context of the\nHardy-Littlewood-Sobolev inequality. This study is analogous to the Choquard\nequation in the Euclidean space, which involves the non-local Riesz potential\noperator. We consider the functional setting within the Sobolev space\n$H^1(\\mathbb{B}^N)$, employing advanced harmonic analysis techniques,\nparticularly the Helgason Fourier transform and semigroup approach to\nfractional Laplacian. Moreover, the Hardy-Littlewood-Sobolev inequality on\ncomplete Riemannian manifolds, as developed by Varopoulos, is pivotal in our\nanalysis. We prove an existence result for the above problem in the subcritical\ncase. Moreover, we also demonstrate that solutions exhibit radial symmetry, and\nestablish the regularity properties.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence, symmetry and regularity of ground states of a non linear choquard equation in the hyperbolic space\",\"authors\":\"Diksha Gupta, K. Sreenadh\",\"doi\":\"arxiv-2409.10236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explore the positive solutions of the following nonlinear\\nChoquard equation involving the green kernel of the fractional operator\\n$(-\\\\Delta_{\\\\mathbb{B}^N})^{-\\\\alpha/2}$ in the hyperbolic space \\\\begin{equation} \\\\begin{aligned} -\\\\Delta_{\\\\mathbb{B}^{N}} u \\\\, - \\\\, \\\\lambda u \\\\, &= \\\\left[(-\\n\\\\Delta_{\\\\mathbb{B}^{N}})^{-\\\\frac{\\\\alpha}{2}}|u|^p\\\\right]|u|^{p-2}u, \\\\end{aligned} \\\\end{equation} where $\\\\Delta_{\\\\mathbb{B}^{N}}$ denotes the Laplace-Beltrami\\noperator on $\\\\mathbb{B}^{N}$, $\\\\lambda \\\\leq \\\\frac{(N-1)^2}{4}$, $1 < p <\\n2^*_{\\\\alpha} = \\\\frac{N+\\\\alpha}{N-2}$, $0 < \\\\alpha < N$, $N \\\\geq 3$,\\n$2^*_\\\\alpha$ is the critical exponent in the context of the\\nHardy-Littlewood-Sobolev inequality. This study is analogous to the Choquard\\nequation in the Euclidean space, which involves the non-local Riesz potential\\noperator. We consider the functional setting within the Sobolev space\\n$H^1(\\\\mathbb{B}^N)$, employing advanced harmonic analysis techniques,\\nparticularly the Helgason Fourier transform and semigroup approach to\\nfractional Laplacian. Moreover, the Hardy-Littlewood-Sobolev inequality on\\ncomplete Riemannian manifolds, as developed by Varopoulos, is pivotal in our\\nanalysis. We prove an existence result for the above problem in the subcritical\\ncase. Moreover, we also demonstrate that solutions exhibit radial symmetry, and\\nestablish the regularity properties.\",\"PeriodicalId\":501036,\"journal\":{\"name\":\"arXiv - MATH - Functional Analysis\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Existence, symmetry and regularity of ground states of a non linear choquard equation in the hyperbolic space
In this paper, we explore the positive solutions of the following nonlinear
Choquard equation involving the green kernel of the fractional operator
$(-\Delta_{\mathbb{B}^N})^{-\alpha/2}$ in the hyperbolic space \begin{equation} \begin{aligned} -\Delta_{\mathbb{B}^{N}} u \, - \, \lambda u \, &= \left[(-
\Delta_{\mathbb{B}^{N}})^{-\frac{\alpha}{2}}|u|^p\right]|u|^{p-2}u, \end{aligned} \end{equation} where $\Delta_{\mathbb{B}^{N}}$ denotes the Laplace-Beltrami
operator on $\mathbb{B}^{N}$, $\lambda \leq \frac{(N-1)^2}{4}$, $1 < p <
2^*_{\alpha} = \frac{N+\alpha}{N-2}$, $0 < \alpha < N$, $N \geq 3$,
$2^*_\alpha$ is the critical exponent in the context of the
Hardy-Littlewood-Sobolev inequality. This study is analogous to the Choquard
equation in the Euclidean space, which involves the non-local Riesz potential
operator. We consider the functional setting within the Sobolev space
$H^1(\mathbb{B}^N)$, employing advanced harmonic analysis techniques,
particularly the Helgason Fourier transform and semigroup approach to
fractional Laplacian. Moreover, the Hardy-Littlewood-Sobolev inequality on
complete Riemannian manifolds, as developed by Varopoulos, is pivotal in our
analysis. We prove an existence result for the above problem in the subcritical
case. Moreover, we also demonstrate that solutions exhibit radial symmetry, and
establish the regularity properties.