{"title":"基于 DEM 的振动筛筛分技术和方法研究:综述","authors":"Yufei Yang, Zhiping Xie, Junhao Wang, Siqian Wang, Wenxin Feng, Xinyue Hou, Yuelong Yu","doi":"10.1007/s42461-024-01080-5","DOIUrl":null,"url":null,"abstract":"<p>Particulate materials are prevalent in the natural and engineering fields, and the screening of particulate materials is constantly improving with the development of industrial needs. New and efficient screening equipment is endless. Discrete element simulation plays a vital role in the design and development of vibrating screens, which improves the design speed of new screening machines and reduces the research and development cost. The purpose of this paper is to collect the literature published in recent years on the research development and application of discrete elements, with the expectation of providing a relatively comprehensive and advanced literature review on the application of discrete components in the field of vibratory screening, which includes the introduction of particle models, the setting of crucial simulation parameters, discrete elements in screening optimization. Meanwhile, the results of many researchers in the field of vibratory screening simulation in recent years are summarized to provide readers with references on the use of the discrete element method in the screening simulation process and to provide a cutting-edge summary for subsequent research.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"14 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Vibrating Screen Screening Technology and Method Based on DEM: a Review\",\"authors\":\"Yufei Yang, Zhiping Xie, Junhao Wang, Siqian Wang, Wenxin Feng, Xinyue Hou, Yuelong Yu\",\"doi\":\"10.1007/s42461-024-01080-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Particulate materials are prevalent in the natural and engineering fields, and the screening of particulate materials is constantly improving with the development of industrial needs. New and efficient screening equipment is endless. Discrete element simulation plays a vital role in the design and development of vibrating screens, which improves the design speed of new screening machines and reduces the research and development cost. The purpose of this paper is to collect the literature published in recent years on the research development and application of discrete elements, with the expectation of providing a relatively comprehensive and advanced literature review on the application of discrete components in the field of vibratory screening, which includes the introduction of particle models, the setting of crucial simulation parameters, discrete elements in screening optimization. Meanwhile, the results of many researchers in the field of vibratory screening simulation in recent years are summarized to provide readers with references on the use of the discrete element method in the screening simulation process and to provide a cutting-edge summary for subsequent research.</p>\",\"PeriodicalId\":18588,\"journal\":{\"name\":\"Mining, Metallurgy & Exploration\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining, Metallurgy & Exploration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42461-024-01080-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining, Metallurgy & Exploration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01080-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Research on Vibrating Screen Screening Technology and Method Based on DEM: a Review
Particulate materials are prevalent in the natural and engineering fields, and the screening of particulate materials is constantly improving with the development of industrial needs. New and efficient screening equipment is endless. Discrete element simulation plays a vital role in the design and development of vibrating screens, which improves the design speed of new screening machines and reduces the research and development cost. The purpose of this paper is to collect the literature published in recent years on the research development and application of discrete elements, with the expectation of providing a relatively comprehensive and advanced literature review on the application of discrete components in the field of vibratory screening, which includes the introduction of particle models, the setting of crucial simulation parameters, discrete elements in screening optimization. Meanwhile, the results of many researchers in the field of vibratory screening simulation in recent years are summarized to provide readers with references on the use of the discrete element method in the screening simulation process and to provide a cutting-edge summary for subsequent research.
期刊介绍:
The aim of this international peer-reviewed journal of the Society for Mining, Metallurgy & Exploration (SME) is to provide a broad-based forum for the exchange of real-world and theoretical knowledge from academia, government and industry that is pertinent to mining, mineral/metallurgical processing, exploration and other fields served by the Society.
The journal publishes high-quality original research publications, in-depth special review articles, reviews of state-of-the-art and innovative technologies and industry methodologies, communications of work of topical and emerging interest, and other works that enhance understanding on both the fundamental and practical levels.